python requests访问报403 "Invalid username/password."

简介:

使用python requests访问一个rest api时,总是报错:

403
{"detail":"Invalid username/password."}

换成curl访问就没有问题。

为什么会这样呢?

把requests的请求header print出啦,看到加了authorization,但是代码并没有使用任何认证。

{'Content-Length': '650', 'Accept-Encoding': 'gzip, deflate', 'Accept': '*/*', 'user-agent': 'a', 'Connection': 'keep-alive',  'content-type': 'application/json', 'Authorization': 'Basic dGVzdDoxMjM='}

猜测和机器环境有关系。用户认证信息应该是存在某个文件中的吧?

用strace看一下打开了哪些文件

strace python test.py

open("/usr/lib64/python2.7/shlex.py", O_RDONLY) = 4
open("/usr/lib64/python2.7/shlex.pyc", O_RDONLY) = 5
open("/root/.netrc", O_RDONLY)          = 3
open("/usr/lib64/python2.7/encodings/idna.py", O_RDONLY) = 3
open("/usr/lib64/python2.7/encodings/idna.pyc", O_RDONLY) = 4
open("/usr/lib64/python2.7/stringprep.py", O_RDONLY) = 4

访问了一个可疑文件 ~/.netrc

$ cat ~/.netrc
default login test password 123

把这个文件拿掉,接口访问就没有报错了。

查一下requests的文档,requests果然会读取.netrc文件
http://docs.python-requests.org/en/master/user/authentication/?highlight=netrc

目录
相关文章
|
2月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
232 0
|
5月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
5月前
|
Web App开发 安全 数据安全/隐私保护
利用Python+Requests实现抖音无水印视频下载
利用Python+Requests实现抖音无水印视频下载
|
5月前
|
JSON 网络安全 数据格式
Python网络请求库requests使用详述
总结来说,`requests`库非常适用于需要快速、简易、可靠进行HTTP请求的应用场景,它的简洁性让开发者避免繁琐的网络代码而专注于交互逻辑本身。通过上述方式,你可以利用 `requests`处理大部分常见的HTTP请求需求。
493 51
|
5月前
|
数据采集 API 调度
Python爬虫框架对比:Scrapy vs Requests在API调用中的应用
本文对比了 Python 中 Scrapy 与 Requests 两大爬虫框架在 API 调用中的差异,涵盖架构设计、调用模式、性能优化及适用场景,并提供实战建议,助力开发者根据项目需求选择合适工具。
|
7月前
|
网络协议 API 开发者
分析http.client与requests在Python中的性能差异并优化。
合理地选择 `http.client`和 `requests`库以及在此基础上优化代码,可以帮助你的Python网络编程更加顺利,无论是在性能还是在易用性上。我们通常推荐使用 `requests`库,因为它的易用性。对于需要大量详细控制的任务,或者对性能有严格要求的情况,可以考虑使用 `http.client`库。同时,不断优化并管理员连接、设定合理超时和重试都是提高网络访问效率和稳定性的好方式。
161 19
|
5月前
|
数据采集 Web App开发 iOS开发
解决Python爬虫访问HTTPS资源时Cookie超时问题
解决Python爬虫访问HTTPS资源时Cookie超时问题
|
6月前
|
JSON 数据格式 Python
解决Python requests库POST请求参数顺序问题的方法。
总之,想要在Python的requests库里保持POST参数顺序,你要像捋顺头发一样捋顺它们,在向服务器炫耀你那有条不紊的数据前。抓紧手中的 `OrderedDict`与 `json`这两把钥匙,就能向服务端展示你的请求参数就像经过高端配置的快递包裹,里面的商品摆放井井有条,任何时候开箱都是一种享受。
132 10
|
6月前
|
网络协议 API Python
解析http.client与requests在Python中的性能比较和改进策略。
最后,需要明确的是,这两种库各有其优点和适用场景。`http.client` 更适合于基础且并行的请求,`requests` 则因其易用且强大的功能,更适用于复杂的 HTTP 场景。对于哪种更适合你的应用,可能需要你自己进行实际的测试来确定。
167 10

推荐镜像

更多