常用优化算法介绍

简介: 作者:Walker在机器学习的世界中,通常我们会发现有很多问题并没有最优的解,或是要计算出最优的解要花费很大的计算量,面对这类问题一般的做法是利用迭代的思想尽可能的逼近问题的最优解。

作者:Walker

在机器学习的世界中,通常我们会发现有很多问题并没有最优的解,或是要计算出最优的解要花费很大的计算量,面对这类问题一般的做法是利用迭代的思想尽可能的逼近问题的最优解。我们把解决此类优化问题的方法叫做优化算法,优化算法本质上是一种数学方法,常见的优化算法包括梯度下降法、牛顿法、Momentum、Nesterov Momentum、Adagrad、Adam等。其实大部分机器学习算法的本质都是建立优化模型,通过优化算法对损失函数(优化的目标函数)进行优化,从而训练出最好的模型。

(1)梯度下降法:
梯度下降法是最常用的一种优化算法。其核心思想是:在当前位置寻找梯度下降最快的方向,来逐渐逼近优化的目标函数。且离目标函数越近,逼近的“步伐”也就越小。梯度下降法本质是一种迭代方法,常用于机器学习算法的模型参数求解。其示意图如下图1所示:

图1梯度下降法

梯度下降法的更新公式为:

其中α为梯度上每次逼近的步长,前边的“-”表示搜索方向为负梯度的方向,L我损失函数。算法更新终止的条件是梯度向量接近于0即可。此外需要特别注意的是,梯度下降法不一定能够找到全局的最优解,很有可能找到的是一个局部最优解。

(2)梯度下降法的变式

通常基于梯度的下降方法又有很多变式,我们主要为大家介绍:随机梯度下降法(SDG)、Momentum、Nesterov Momentum、Adagrad、Adam。

随机梯度下降法是每次使用一批数据进行梯度的计算,而非计算全部数据的梯度,因为如果每次计算全部数据的梯度,会导致运算量加大,运算时间变长,容易陷入局部最优解,而随机梯度下降可能每次不是朝着真正最小的方向,这样反而可以跳出局部的最优解。

Momentum是在随机梯度下降法的基础上,增加了动量(Momentum)的技术。其核心是通过优化相关方向的训练和弱化无关方向的振荡,来加速SGD训练。Momentum的方法能够在一定程度上缓解随机梯度下降法收敛不稳定的问题,并且有一定的摆脱陷入局部最优解的能力。

Nesterov Momentum是基于Momentum的加速算法,相比于传统的动量算法,最大的优化是计算经过动量更新之后的位置梯度。

Adagrad即adaptive gradient,是一种自适应学习率的梯度法。它通过记录并调整每次迭代过程中的前进方向和距离,使得针对不同问题都有一套自适应学习率的方法。Adagrad最大的优势是不需要手动来调整学习率,但与此同时会降低学习率。

Adam即Adaptive Moment Estimation,是能够自适应时刻的估计方法,能够针对每个参数,计算自适应学习率。这是一种综合性的优化方法,在机器学习实际训练中,往往能够取得不错的效果。

(3)牛顿法和拟牛顿法

与上述梯度类型的优化算法最大的不同是,牛顿法是一种二阶收敛算法,所以它的收敛速度相较于一阶算法会更快。牛顿法二阶的意义在于它不仅会沿着梯度最大的方向下降,还会考虑走的下一步坡度是不是也很大,它能够以较远的目光全局的逼近目标函数。其算法的具体步骤为:

1.首先选择接近于函数f(x)的零点x0,并计算f(x0)处的斜率f’(x0)。然后我们求解以下方程,得到比刚刚的x0更加准确的解x1。

2.接下来我们利用x1进行下一轮的迭代,迭代公式如下所示。这样经过反复的迭代过程,我们便能取得函数f(x)的最优解。

牛顿法的迭代示意图如下所示:

图2 牛顿法

虽然牛顿法相较于梯度下降法等优化算法收敛速度更快,但每一步都需要求解复杂的Hessian矩阵,计算非常不易。所以后来美国Argonne国家实验室的物理学家W.C.Davidon又针对牛顿法计算复杂的缺陷提出了拟牛顿法。它的核心思想是使用正定矩阵来近似Hessian矩阵的逆,从而简化了运算的复杂。另外,因为拟牛顿法不需要二阶导数的信息,所以现在拟牛顿法在机器学习实际问题中应用更加的广泛。

【总结】:除了以上几类较为常见的优化算法以外,还有共轭梯度法、启发式优化算法等。在实际的机器学习问题中,往往需要具体问题具体分析,根据每类优化问题的特征,选择合适的优化算法。

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的优化算法及其应用
【10月更文挑战第8天】 本文将探讨深度学习中常用的优化算法,包括梯度下降法、Adam和RMSProp等,介绍这些算法的基本原理与应用场景。通过实例分析,帮助读者更好地理解和应用这些优化算法,提高深度学习模型的训练效率与性能。
145 63
|
15天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
26天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
25天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
26天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
26天前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
21 1
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
|
1月前
|
机器学习/深度学习 人工智能 算法
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
76 0
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解