Python复杂网络结构可视化——matplotlib+networkx

简介: Python复杂网络结构可视化——matplotlib+networkx

什么是networkx?

networkx在02年5月产生,是用python语言编写的软件包,便于用户对复杂网络进行创建、操作和学习。利用networkx可以以标准化和非标准化的数据格式存储网络、生成多种随机网络和经典网络、分析网络结构、建立网络模型、设计新的网络算法、进行网络绘制等。 ——百度百科

我们可以用networkx做什么?

https://networkx.github.io/documentation/stable/auto_examples/index.html

1.画图

image

2.有向图,无向图,网络图……

image

3.总之各种图

image

image

看到这你是不是心动了呢?今天的教程就是要教会你画出封面上的三层感知机模型图!

Let's get started!

首先导入networkx和matplotlib模块
import networkx as nx
import matplotlib.pyplot as plt 
>>> import networkx as nx
>>> G = nx.Graph() 定义了一个空图
>>> G.add_node(1) 这个图中增加了1节点
>>> G.add_node('A') 增加'A'节点
>>> G.add_nodes_from([2, 3]) 同时加2和3两个节点
>>> G.add_edges_from([(1,2),(1,3),(2,4),(2,5),(3,6),(4,8),(5,8),(3,7)]) 
# 增加这么多条边,在下面有举例
>>> H = nx.path_graph(10) 
>>> G.add_nodes_from(H)
>>> G.add_node(H)
G.add_node('a')#添加点a
G.add_node(1,1)#用坐标来添加点
G.add_edge('x','y')#添加边,起点为x,终点为y
G.add_weight_edges_from([('x','y',1.0)])#第三个输入量为权值
#也可以
list = [[('a','b',5.0),('b','c',3.0),('a','c',1.0)]
G.add_weight_edges_from([(list)])

我们来看看上面最后一句是什么意思

import matplotlib.pyplot as plt
import networkx as nx
H = nx.path_graph(10) 
G.add_nodes_from(H)
nx.draw(G, with_labels=True)
plt.show()

image

生成了标号为0到9的十个点!别急,丑是丑了点,一会我们再给他化妆。

再举个栗子

G=nx.Graph()
#导入所有边,每条边分别用tuple表示
G.add_edges_from([(1,2),(1,3),(2,4),(2,5),(3,6),(4,8),(5,8),(3,7)]) 
nx.draw(G, with_labels=True, edge_color='b', node_color='g', node_size=1000)
plt.show()
#plt.savefig('./generated_image.png') 如果你想保存图片,去除这句的注释

image

好了,你现在已经知道如何给图添加边和节点了,接下来是构造环:

画个圈圈

import matplotlib.pyplot as plt
import networkx as nx
# H = nx.path_graph(10) 
# G.add_nodes_from(H)
G = nx.Graph()
G.add_cycle([0,1,2,3,4])
nx.draw(G, with_labels=True)
plt.show()

image

画个五角星

import networkx as nx
import matplotlib.pyplot as plt 
#画图!
G=nx.Graph()
G.add_node(1)
G.add_nodes_from([2,3,4,5])
for i in range(5):
    for j in range(i):
        if (abs(i-j) not in (1,4)):    
            G.add_edge(i+1, j+1)
nx.draw(G, 
        with_labels=True, #这个选项让节点有名称
        edge_color='b', # b stands for blue! 
        pos=nx.circular_layout(G), # 这个是选项选择点的排列方式,具体可以用 help(nx.drawing.layout) 查看
     # 主要有spring_layout  (default), random_layout, circle_layout, shell_layout   
     # 这里是环形排布,还有随机排列等其他方式  
        node_color='r', # r = red
        node_size=1000, # 节点大小
        width=3, # 边的宽度
       )
plt.show()

image

import random
G = nx.gnp_random_graph(10,0.3)
for u,v,d in G.edges(data=True):
    d['weight'] = random.random()

edges,weights = zip(*nx.get_edge_attributes(G,'weight').items())

pos = nx.spring_layout(G)
nx.draw(G, pos, node_color='b', edgelist=edges, edge_color=weights, width=10.0, edge_cmap=plt.cm.Blues)
# plt.savefig('edges.png')
plt.show()

image

加入权重

import matplotlib.pyplot as plt
import networkx as nx

G = nx.Graph()

G.add_edge('a', 'b', weight=0.6)
G.add_edge('a', 'c', weight=0.2)
G.add_edge('c', 'd', weight=0.1)
G.add_edge('c', 'e', weight=0.7)
G.add_edge('c', 'f', weight=0.9)
G.add_edge('a', 'd', weight=0.3)

elarge = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] > 0.5]
esmall = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] <= 0.5]

pos = nx.spring_layout(G)  # positions for all nodes

# nodes
nx.draw_networkx_nodes(G, pos, node_size=700)

# edges
nx.draw_networkx_edges(G, pos, edgelist=elarge,
                       width=6)
nx.draw_networkx_edges(G, pos, edgelist=esmall,
                       width=6, alpha=0.5, edge_color='b', style='dashed')

# labels
nx.draw_networkx_labels(G, pos, font_size=20, font_family='sans-serif')

plt.axis('off')
plt.show()

image

有向图

from __future__ import division
import matplotlib.pyplot as plt
import networkx as nx

G = nx.generators.directed.random_k_out_graph(10, 3, 0.5)
pos = nx.layout.spring_layout(G)

node_sizes = [3 + 10 * i for i in range(len(G))]
M = G.number_of_edges()
edge_colors = range(2, M + 2)
edge_alphas = [(5 + i) / (M + 4) for i in range(M)]

nodes = nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='blue')
edges = nx.draw_networkx_edges(G, pos, node_size=node_sizes, arrowstyle='->',
                               arrowsize=10, edge_color=edge_colors,
                               edge_cmap=plt.cm.Blues, width=2)
# set alpha value for each edge
for i in range(M):
    edges[i].set_alpha(edge_alphas[i])

ax = plt.gca()
ax.set_axis_off()
plt.show()

image

颜色渐变的节点

import matplotlib.pyplot as plt
import networkx as nx

G = nx.cycle_graph(24)
pos = nx.spring_layout(G, iterations=200)
nx.draw(G, pos, node_color=range(24), node_size=800, cmap=plt.cm.Blues)
plt.show()

image

颜色渐变的边

import matplotlib.pyplot as plt
import networkx as nx

G = nx.star_graph(20)
pos = nx.spring_layout(G)
colors = range(20)
nx.draw(G, pos, node_color='#A0CBE2', edge_color=colors,
        width=4, edge_cmap=plt.cm.Blues, with_labels=False)
plt.show()

image

如何画一个多层感知机?

import matplotlib.pyplot as plt
import networkx as nx 
left, right, bottom, top, layer_sizes = .1, .9, .1, .9, [4, 7, 7, 2]
# 网络离上下左右的距离
# layter_sizes可以自己调整
import random
G = nx.Graph()
v_spacing = (top - bottom)/float(max(layer_sizes))
h_spacing = (right - left)/float(len(layer_sizes) - 1)
node_count = 0
for i, v in enumerate(layer_sizes):
    layer_top = v_spacing*(v-1)/2. + (top + bottom)/2.
    for j in range(v):
        G.add_node(node_count, pos=(left + i*h_spacing, layer_top - j*v_spacing))
        node_count += 1
# 这上面的数字调整我想了好半天,汗
for x, (left_nodes, right_nodes) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
    for i in range(left_nodes):
        for j in range(right_nodes):
            G.add_edge(i+sum(layer_sizes[:x]), j+sum(layer_sizes[:x+1]))    
# 慢慢研究吧
pos=nx.get_node_attributes(G,'pos')
# 把每个节点中的位置pos信息导出来
nx.draw(G, pos, 
        node_color=range(node_count), 
        with_labels=True,
        node_size=200, 
        edge_color=[random.random() for i in range(len(G.edges))], 
        width=3, 
        cmap=plt.cm.Dark2, # matplotlib的调色板,可以搜搜,很多颜色呢
        edge_cmap=plt.cm.Blues
       )
plt.show()

image

差不多就是这个效果了。

后续我会封装为一个类,加入动态演示,比如通过颜色深浅,显示神经网络在优化的时候权重变化。应该会很好玩,嘿嘿。

上面你也可以改变layer_sizes

比如改为233333

image

调皮了

image

layter_sizes = [2, 3, 4, 5, 5, 4, 3, ] 贼丑了

完。

原文发布时间为:2018-08-06
本文作者:DeepWeaver
本文来自云栖社区合作伙伴“ Python爱好者社区”,了解相关信息可以关注“ Python爱好者社区

相关文章
|
9天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
48 6
|
2天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
12 3
|
2天前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
|
4天前
|
Python
SciPy 教程 之 SciPy 图结构 7
《SciPy 教程 之 SciPy 图结构 7》介绍了 SciPy 中处理图结构的方法。图是由节点和边组成的集合,用于表示对象及其之间的关系。scipy.sparse.csgraph 模块提供了多种图处理功能,如 `breadth_first_order()` 方法可按广度优先顺序遍历图。示例代码展示了如何使用该方法从给定的邻接矩阵中获取广度优先遍历的顺序。
13 2
|
4天前
|
算法 Python
SciPy 教程 之 SciPy 图结构 5
SciPy 图结构教程,介绍图的基本概念和SciPy中处理图结构的模块scipy.sparse.csgraph。重点讲解贝尔曼-福特算法,用于求解任意两点间最短路径,支持有向图和负权边。通过示例演示如何使用bellman_ford()方法计算最短路径。
14 3
|
7天前
|
数据采集 存储 XML
Python实现网络爬虫自动化:从基础到实践
本文将介绍如何使用Python编写网络爬虫,从最基础的请求与解析,到自动化爬取并处理复杂数据。我们将通过实例展示如何抓取网页内容、解析数据、处理图片文件等常用爬虫任务。
|
10天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
33 4
|
11天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
15 3
|
10天前
|
网络协议 物联网 API
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第26天】Python 是一门功能强大且易于学习的编程语言,Twisted 框架以其事件驱动和异步IO处理能力,在网络编程领域独树一帜。本文深入探讨 Twisted 的异步IO机制,并通过实战示例展示其强大功能。示例包括创建简单HTTP服务器,展示如何高效处理大量并发连接。
31 1
|
11天前
|
数据采集 存储 机器学习/深度学习
构建高效的Python网络爬虫
【10月更文挑战第25天】本文将引导你通过Python编程语言实现一个高效网络爬虫。我们将从基础的爬虫概念出发,逐步讲解如何利用Python强大的库和框架来爬取、解析网页数据,以及存储和管理这些数据。文章旨在为初学者提供一个清晰的爬虫开发路径,同时为有经验的开发者提供一些高级技巧。
11 1
下一篇
无影云桌面