Python复杂网络结构可视化——matplotlib+networkx

简介: Python复杂网络结构可视化——matplotlib+networkx

什么是networkx?

networkx在02年5月产生,是用python语言编写的软件包,便于用户对复杂网络进行创建、操作和学习。利用networkx可以以标准化和非标准化的数据格式存储网络、生成多种随机网络和经典网络、分析网络结构、建立网络模型、设计新的网络算法、进行网络绘制等。 ——百度百科

我们可以用networkx做什么?

https://networkx.github.io/documentation/stable/auto_examples/index.html

1.画图

image

2.有向图,无向图,网络图……

image

3.总之各种图

image

image

看到这你是不是心动了呢?今天的教程就是要教会你画出封面上的三层感知机模型图!

Let's get started!

首先导入networkx和matplotlib模块
import networkx as nx
import matplotlib.pyplot as plt 
>>> import networkx as nx
>>> G = nx.Graph() 定义了一个空图
>>> G.add_node(1) 这个图中增加了1节点
>>> G.add_node('A') 增加'A'节点
>>> G.add_nodes_from([2, 3]) 同时加2和3两个节点
>>> G.add_edges_from([(1,2),(1,3),(2,4),(2,5),(3,6),(4,8),(5,8),(3,7)]) 
# 增加这么多条边,在下面有举例
>>> H = nx.path_graph(10) 
>>> G.add_nodes_from(H)
>>> G.add_node(H)
G.add_node('a')#添加点a
G.add_node(1,1)#用坐标来添加点
G.add_edge('x','y')#添加边,起点为x,终点为y
G.add_weight_edges_from([('x','y',1.0)])#第三个输入量为权值
#也可以
list = [[('a','b',5.0),('b','c',3.0),('a','c',1.0)]
G.add_weight_edges_from([(list)])

我们来看看上面最后一句是什么意思

import matplotlib.pyplot as plt
import networkx as nx
H = nx.path_graph(10) 
G.add_nodes_from(H)
nx.draw(G, with_labels=True)
plt.show()

image

生成了标号为0到9的十个点!别急,丑是丑了点,一会我们再给他化妆。

再举个栗子

G=nx.Graph()
#导入所有边,每条边分别用tuple表示
G.add_edges_from([(1,2),(1,3),(2,4),(2,5),(3,6),(4,8),(5,8),(3,7)]) 
nx.draw(G, with_labels=True, edge_color='b', node_color='g', node_size=1000)
plt.show()
#plt.savefig('./generated_image.png') 如果你想保存图片,去除这句的注释

image

好了,你现在已经知道如何给图添加边和节点了,接下来是构造环:

画个圈圈

import matplotlib.pyplot as plt
import networkx as nx
# H = nx.path_graph(10) 
# G.add_nodes_from(H)
G = nx.Graph()
G.add_cycle([0,1,2,3,4])
nx.draw(G, with_labels=True)
plt.show()

image

画个五角星

import networkx as nx
import matplotlib.pyplot as plt 
#画图!
G=nx.Graph()
G.add_node(1)
G.add_nodes_from([2,3,4,5])
for i in range(5):
    for j in range(i):
        if (abs(i-j) not in (1,4)):    
            G.add_edge(i+1, j+1)
nx.draw(G, 
        with_labels=True, #这个选项让节点有名称
        edge_color='b', # b stands for blue! 
        pos=nx.circular_layout(G), # 这个是选项选择点的排列方式,具体可以用 help(nx.drawing.layout) 查看
     # 主要有spring_layout  (default), random_layout, circle_layout, shell_layout   
     # 这里是环形排布,还有随机排列等其他方式  
        node_color='r', # r = red
        node_size=1000, # 节点大小
        width=3, # 边的宽度
       )
plt.show()

image

import random
G = nx.gnp_random_graph(10,0.3)
for u,v,d in G.edges(data=True):
    d['weight'] = random.random()

edges,weights = zip(*nx.get_edge_attributes(G,'weight').items())

pos = nx.spring_layout(G)
nx.draw(G, pos, node_color='b', edgelist=edges, edge_color=weights, width=10.0, edge_cmap=plt.cm.Blues)
# plt.savefig('edges.png')
plt.show()

image

加入权重

import matplotlib.pyplot as plt
import networkx as nx

G = nx.Graph()

G.add_edge('a', 'b', weight=0.6)
G.add_edge('a', 'c', weight=0.2)
G.add_edge('c', 'd', weight=0.1)
G.add_edge('c', 'e', weight=0.7)
G.add_edge('c', 'f', weight=0.9)
G.add_edge('a', 'd', weight=0.3)

elarge = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] > 0.5]
esmall = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] <= 0.5]

pos = nx.spring_layout(G)  # positions for all nodes

# nodes
nx.draw_networkx_nodes(G, pos, node_size=700)

# edges
nx.draw_networkx_edges(G, pos, edgelist=elarge,
                       width=6)
nx.draw_networkx_edges(G, pos, edgelist=esmall,
                       width=6, alpha=0.5, edge_color='b', style='dashed')

# labels
nx.draw_networkx_labels(G, pos, font_size=20, font_family='sans-serif')

plt.axis('off')
plt.show()

image

有向图

from __future__ import division
import matplotlib.pyplot as plt
import networkx as nx

G = nx.generators.directed.random_k_out_graph(10, 3, 0.5)
pos = nx.layout.spring_layout(G)

node_sizes = [3 + 10 * i for i in range(len(G))]
M = G.number_of_edges()
edge_colors = range(2, M + 2)
edge_alphas = [(5 + i) / (M + 4) for i in range(M)]

nodes = nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='blue')
edges = nx.draw_networkx_edges(G, pos, node_size=node_sizes, arrowstyle='->',
                               arrowsize=10, edge_color=edge_colors,
                               edge_cmap=plt.cm.Blues, width=2)
# set alpha value for each edge
for i in range(M):
    edges[i].set_alpha(edge_alphas[i])

ax = plt.gca()
ax.set_axis_off()
plt.show()

image

颜色渐变的节点

import matplotlib.pyplot as plt
import networkx as nx

G = nx.cycle_graph(24)
pos = nx.spring_layout(G, iterations=200)
nx.draw(G, pos, node_color=range(24), node_size=800, cmap=plt.cm.Blues)
plt.show()

image

颜色渐变的边

import matplotlib.pyplot as plt
import networkx as nx

G = nx.star_graph(20)
pos = nx.spring_layout(G)
colors = range(20)
nx.draw(G, pos, node_color='#A0CBE2', edge_color=colors,
        width=4, edge_cmap=plt.cm.Blues, with_labels=False)
plt.show()

image

如何画一个多层感知机?

import matplotlib.pyplot as plt
import networkx as nx 
left, right, bottom, top, layer_sizes = .1, .9, .1, .9, [4, 7, 7, 2]
# 网络离上下左右的距离
# layter_sizes可以自己调整
import random
G = nx.Graph()
v_spacing = (top - bottom)/float(max(layer_sizes))
h_spacing = (right - left)/float(len(layer_sizes) - 1)
node_count = 0
for i, v in enumerate(layer_sizes):
    layer_top = v_spacing*(v-1)/2. + (top + bottom)/2.
    for j in range(v):
        G.add_node(node_count, pos=(left + i*h_spacing, layer_top - j*v_spacing))
        node_count += 1
# 这上面的数字调整我想了好半天,汗
for x, (left_nodes, right_nodes) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
    for i in range(left_nodes):
        for j in range(right_nodes):
            G.add_edge(i+sum(layer_sizes[:x]), j+sum(layer_sizes[:x+1]))    
# 慢慢研究吧
pos=nx.get_node_attributes(G,'pos')
# 把每个节点中的位置pos信息导出来
nx.draw(G, pos, 
        node_color=range(node_count), 
        with_labels=True,
        node_size=200, 
        edge_color=[random.random() for i in range(len(G.edges))], 
        width=3, 
        cmap=plt.cm.Dark2, # matplotlib的调色板,可以搜搜,很多颜色呢
        edge_cmap=plt.cm.Blues
       )
plt.show()

image

差不多就是这个效果了。

后续我会封装为一个类,加入动态演示,比如通过颜色深浅,显示神经网络在优化的时候权重变化。应该会很好玩,嘿嘿。

上面你也可以改变layer_sizes

比如改为233333

image

调皮了

image

layter_sizes = [2, 3, 4, 5, 5, 4, 3, ] 贼丑了

完。

原文发布时间为:2018-08-06
本文作者:DeepWeaver
本文来自云栖社区合作伙伴“ Python爱好者社区”,了解相关信息可以关注“ Python爱好者社区

相关文章
|
1月前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
1月前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
67 2
|
11天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
76 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
84 55
|
5天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
36 8
|
9天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
61 7
|
16天前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
35 6
|
19天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
44 8
|
22天前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
25天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。