NIH发布包含10600张CT图像数据库 为AI算法测试铺路

简介: 美国国立卫生研究院(NIH)最近发布了一个庞大的胸部X光数据库,现已公开近10600张CT扫描图像,以支持医疗人工智能算法的开发和测试。这个大型成像数据库被称为DeepLesion,是由美国国立卫生研究院的Ronald Summers及其同事创建的。

美国国立卫生研究院(NIH)最近发布了一个庞大的胸部X光数据库,现已公开近10600张CT扫描图像,以支持医疗人工智能算法的开发和测试。这个大型成像数据库被称为DeepLesion,是由美国国立卫生研究院的Ronald Summers及其同事创建的。他们对其机构里的放射科医生的CT扫描结果进行了临床相关的标注。

Summers是NIH影像生物标记和计算机辅助诊断实验室的高级研究员和放射学家。

根据美国国立卫生研究院的说法,这些标注通常很复杂,包括描述病变大小和位置的箭头、线条、分割和文本,以便让临床医生可以监测疾病变化。标注医学图像需要广泛的临床经验,并且会耗费大量时间。
实际上,缺乏可用于训练AI算法的大型医学图像数据库一直被认为是AI技术寻求突破的主要障碍之一。Summers及其同事的努力就是为了改变这种状况,至少在X光方面 。去年他们发布了ChestX-ray8数据库,库中包含了100000张X光图像。

DeepLesion通过提供足够强大的CT扫描数据库和附带的标注来训练深度神经网络,从而帮助绕过这些障碍。美国国立卫生研究院建议,有朝一日可以“使科学界能够创建一个具有统一框架的大规模通用病变检测器”。

image

该数据库包括来自马里兰州贝塞斯达NIH临床中心的4400多名患者的大约10600项研究。虽然目前大多数数据库包含10至数百个单一类型的病变,但该组设计的DeepLesion可容纳超过32000个病灶,涵盖各种放射学发现,如肺结节、淋巴结肿大和肝肿瘤。

有了多范畴的病变数据库,DeepLesion为研究人员提供了开发人工智能算法的机会,能够自动检测和诊断多种病变类型。美国国立卫生研究院指出,未来它还可能发展成为一个通用病变检测器,可用作初始筛选工具,并将其结果发送到其他更专业的算法。此外,研究人员可能可以在同一次CT扫描中研究不同类型病变之间的关系,从而全面评估癌症负担。

为了开始展示这种潜力,Summers及其同事用DeepLesion数据库来训练一个典型的通用病变检测器,以发现各种病变。他们的探测器灵敏度达到81.1%,每个图像有5个假阳性。

研究人员计划继续向DeepLesion添加图像,以提高检测器的准确性,他们希望将MRI扫描包含在数据库中,并结合未来多家医院的数据。该研究小组认为,除了病变检测外,该数据库还可以帮助训练算法对病变进行分类,并根据现有模式预测病变的发展。

原文发布时间为:2018-08-05
本文来自云栖社区合作伙伴“专知”,了解相关信息可以关注“专知

相关文章
|
1月前
|
人工智能 数据可视化 测试技术
AI测试平台自动遍历:低代码也能玩转全链路测试
AI测试平台的自动遍历功能,通过低代码配置实现Web和App的自动化测试。用户只需提供入口链接或安装包及简单配置,即可自动完成页面结构识别、操作验证,并生成可视化报告,大幅提升测试效率,特别适用于高频迭代项目。
|
1月前
|
人工智能 测试技术 调度
写用例写到怀疑人生?AI 智能测试平台帮你一键生成!
霍格沃兹测试开发学社推出AI智能测试用例生成功能,结合需求文档一键生成高质量测试用例,大幅提升效率,减少重复劳动。支持自定义提示词、多文档分析与批量管理,助力测试人员高效完成测试设计,释放更多时间投入核心分析工作。平台已开放内测,欢迎体验!
|
1月前
|
人工智能 测试技术 项目管理
测试不再碎片化:AI智能体平台「项目资料套件」功能上线!
在实际项目中,需求文档分散、整理费时、测试遗漏等问题常困扰测试工作。霍格沃兹推出AI智能体测试平台全新功能——项目资料套件,可将多个关联文档打包管理,并一键生成测试用例,提升测试完整性与效率。支持套件创建、文档关联、编辑删除及用例生成,适用于复杂项目、版本迭代等场景,助力实现智能化测试协作,让测试更高效、更专业。
|
1月前
|
存储 人工智能 测试技术
用AI提升测试效率:智能体平台的「需求文档管理」功能上线啦!
霍格沃兹测试开发学社推出AI智能体测试平台,全新「需求文档管理」功能助力高效测试准备。集中管理需求文档,支持多种上传方式,智能生成测试用例,提升测试效率与准确性,助力迈向智能化测试新时代。
|
1月前
|
人工智能 JavaScript 算法
Playwright携手MCP:AI智能体实现自主化UI回归测试
MCP 协议使得 AI 能够通过 Playwright 操作浏览器,其中快照生成技术将页面状态转化为 LLM 可理解的文本,成为驱动自动化测试的关键。该方式适用于探索性测试和快速验证,但目前仍面临快照信息缺失、元素定位不稳定、成本高、复杂场景适应性差以及结果确定性不足等挑战。人机协同被认为是未来更可行的方向,AI 负责执行固定流程,人类则专注策略与验证。
|
16天前
|
人工智能 缓存 自然语言处理
Java与多模态AI:构建支持文本、图像和音频的智能应用
随着大模型从单一文本处理向多模态能力演进,现代AI应用需要同时处理文本、图像、音频等多种信息形式。本文深入探讨如何在Java生态中构建支持多模态AI能力的智能应用。我们将完整展示集成视觉模型、语音模型和语言模型的实践方案,涵盖从文件预处理、多模态推理到结果融合的全流程,为Java开发者打开通往下一代多模态AI应用的大门。
174 41
|
8天前
|
人工智能 自然语言处理 JavaScript
Playwright MCP在UI回归测试中的实战:构建AI自主测试智能体
Playwright MCP结合AI智能体,革新UI回归测试:通过自然语言驱动浏览器操作,降低脚本编写门槛,提升测试效率与覆盖范围。借助快照解析、智能定位与Jira等工具集成,实现从需求描述到自动化执行的闭环,推动测试迈向智能化、民主化新阶段。
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
356 8
|
25天前
|
人工智能 自然语言处理 前端开发
深度解析Playwright MCP:功能、优势与挑战,AI如何提升测试效率与覆盖率
Playwright MCP通过AI与浏览器交互,实现自然语言驱动的自动化测试。它降低门槛、提升效率,助力测试工程师聚焦高价值工作,是探索性测试与快速验证的新利器。

热门文章

最新文章

下一篇
oss教程