Java并发基础:了解无锁CAS就从源码分析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 分析 AtomicInteger.java,Unsafe.java,unsafe.cpp 源码 ,是如何实现原子性操作的

CAS的全称为Compare And Swap,直译就是比较交换。是一条CPU的原子指令,其作用是让CPU先进行比较两个值是否相等,然后原子地更新某个位置的值,其实现方式是基于硬件平台的汇编指令,在intel的CPU中,使用的是cmpxchg指令,就是说CAS是靠硬件实现的,从而在硬件层面提升效率。

CSA 原理

利用CPU的CAS指令,同时借助JNI来完成Java的非阻塞算法,其它原子操作都是利用类似的特性完成的。
java.util.concurrent 下面的源码中,Atomic, ReentrantLock 都使用了Unsafe类中的方法来保证并发的安全性。

CAS操作是原子性的,所以多线程并发使用CAS更新数据时,可以不使用锁,JDK中大量使用了CAS来更新数据而防止加锁来保持原子更新。

CAS 操作包含三个操作数 :内存偏移量位置(V)、预期原值(A)和新值(B)。 如果内存位置的值与预期原值相匹配,那么处理器会自动将该位置值更新为新值 。否则,处理器不做任何操作。

源码分析

下面来看一下 java.util.concurrent.atomic.AtomicInteger.javagetAndIncrement()getAndDecrement()是如何利用CAS实现原子性操作的。

AtomicInteger 源码解析

// 使用 unsafe 类的原子操作方式
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;

static {
    try {
        //计算变量 value 在类对象中的偏移量
        valueOffset = unsafe.objectFieldOffset(AtomicInteger.class.getDeclaredField("value"));
    } catch (Exception ex) { throw new Error(ex); }
}

valueOffset 字段表示 "value" 内存位置,在compareAndSwap 方法 ,第二个参数会用到.

关于偏移量

Unsafe 调用C 语言可以通过偏移量对变量进行操作

//volatile变量value
private volatile int value;

 /**
 * 创建具有给定初始值的新 AtomicInteger
 *
 * @param initialValue 初始值
 */
public AtomicInteger(int initialValue) {
    value = initialValue;
}

//返回当前的值
public final int get() {
    return value;
}
//原子更新为新值并返回旧值
public final int getAndSet(int newValue) {
    return unsafe.getAndSetInt(this, valueOffset, newValue);
}
//最终会设置成新值
public final void lazySet(int newValue) {
    unsafe.putOrderedInt(this, valueOffset, newValue);
}
//如果输入的值等于预期值,则以原子方式更新为新值
public final boolean compareAndSet(int expect, int update) {
    return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
//方法相当于原子性的 ++i
public final int getAndIncrement() {
    //三个参数,1、当前的实例 2、value实例变量的偏移量 3、递增的值。
    return unsafe.getAndAddInt(this, valueOffset, 1);
}
//方法相当于原子性的 --i
public final int getAndDecrement() {
    //三个参数,1、当前的实例 2、value实例变量的偏移量 3、递减的值。
    return unsafe.getAndAddInt(this, valueOffset, -1);
}

实现逻辑封装在 Unsafe 中 getAndAddInt 方法,继续往下看,Unsafe 源码解析

Unsafe 源码解析

在JDK8中追踪可见sun.misc.Unsafe这个类是无法看见源码的,打开openjdk8源码看

文件:openjdk-8-src-b132-03_mar_2014.zip

目录:openjdk\jdk\src\share\classes\sun\misc\Unsafe.java

通常我们最好也不要使用Unsafe类,除非有明确的目的,并且也要对它有深入的了解才行。要想使用Unsafe类需要用一些比较tricky的办法。Unsafe类使用了单例模式,需要通过一个静态方法getUnsafe()来获取。但Unsafe类做了限制,如果是普通的调用的话,它会抛出一个SecurityException异常;只有由主类加载器加载的类才能调用这个方法。

下面是sun.misc.Unsafe.java类源码


//获取Unsafe实例静态方法
@CallerSensitive
public static Unsafe getUnsafe() {
    Class<?> caller = Reflection.getCallerClass();
    if (!VM.isSystemDomainLoader(caller.getClassLoader()))
        throw new SecurityException("Unsafe");
    return theUnsafe;
}

网上也有一些办法来用主类加载器加载用户代码,最简单方法是利用Java反射,方法如下:

private static Unsafe unsafe;

static {
    try {
        //通过反射获取rt.jar下的Unsafe类
        Field field = Unsafe.class.getDeclaredField("theUnsafe");
        field.setAccessible(true);
        unsafe = (Unsafe) field.get(null);
    } catch (Exception e) {
        System.out.println("Get Unsafe instance occur error" + e);
    }
}

获取到Unsafe实例之后,我们就可以为所欲为了。Unsafe类提供了以下这些功能:

https://www.cnblogs.com/pkufork/p/java_unsafe.html

    //native硬件级别的原子操作
    //类似的有compareAndSwapInt,compareAndSwapLong,compareAndSwapBoolean,compareAndSwapChar等等。
    public final native boolean compareAndSwapInt(Object o, long offset,int expected,int x);

    //内部使用自旋的方式进行CAS更新(while循环进行CAS更新,如果更新失败,则循环再次重试)
    public final int getAndAddInt(Object o, long offset, int delta) {
        int v;
        do {
            //获取对象内存地址偏移量上的数值v
            v = getIntVolatile(o, offset);
            //如果现在还是v,设置为 v + delta,否则返回false,继续循环再次重试.
        } while (!compareAndSwapInt(o, offset, v, v + delta));
        return v;
    }

利用 Unsafe 类的 JNI compareAndSwapInt 方法实现,使用CAS实现一个原子操作更新,

compareAndSwapInt 四个参数

1、当前的实例
2、实例变量的内存地址偏移量
3、预期的旧值
4、要更新的值

unsafe.cpp 深层次解析

// unsafe.cpp
/*
 * 这个看起来好像不像一个函数,不过不用担心,不是重点。UNSAFE_ENTRY 和 UNSAFE_END 都是宏,
 * 在预编译期间会被替换成真正的代码。下面的 jboolean、jlong 和 jint 等是一些类型定义(typedef):
 *
 * 省略部分内容
 */
UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x))
  UnsafeWrapper("Unsafe_CompareAndSwapInt");
  oop p = JNIHandles::resolve(obj);
  // 根据偏移量,计算 value 的地址。这里的 offset 就是 AtomaicInteger 中的 valueOffset
  jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
  // 调用 Atomic 中的函数 cmpxchg,该函数声明于 Atomic.hpp 中
  return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
UNSAFE_END

// atomic.cpp
unsigned Atomic::cmpxchg(unsigned int exchange_value, volatile unsigned int* dest, unsigned int compare_value) {
  assert(sizeof(unsigned int) == sizeof(jint), "more work to do");
  /*
   * 根据操作系统类型调用不同平台下的重载函数,这个在预编译期间编译器会决定调用哪个平台下的重载
   * 函数。相关的预编译逻辑如下:
   *
   * atomic.inline.hpp:
   *    #include "runtime/atomic.hpp"
   *  
   *    // Linux
   *    #ifdef TARGET_OS_ARCH_linux_x86
   *    # include "atomic_linux_x86.inline.hpp"
   *    #endif
   * 
   *    // 省略部分代码
   *  
   *    // Windows
   *    #ifdef TARGET_OS_ARCH_windows_x86
   *    # include "atomic_windows_x86.inline.hpp"
   *    #endif
   *  
   *    // BSD
   *    #ifdef TARGET_OS_ARCH_bsd_x86
   *    # include "atomic_bsd_x86.inline.hpp"
   *    #endif
   *
   * 接下来分析 atomic_windows_x86.inline.hpp 中的 cmpxchg 函数实现
   */
  return (unsigned int)Atomic::cmpxchg((jint)exchange_value, (volatile jint*)dest,
                                       (jint)compare_value);
}

上面的分析看起来比较多,不过主流程并不复杂。如果不纠结于代码细节,还是比较容易看懂的。接下来,我会分析 Windows 平台下的 Atomic::cmpxchg 函数。继续往下看吧。

// atomic_windows_x86.inline.hpp
#define LOCK_IF_MP(mp) __asm cmp mp, 0  \
                       __asm je L0      \
                       __asm _emit 0xF0 \
                       __asm L0:
            
inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {
  // alternative for InterlockedCompareExchange
  int mp = os::is_MP();
  __asm {
    mov edx, dest
    mov ecx, exchange_value
    mov eax, compare_value
    LOCK_IF_MP(mp)
    cmpxchg dword ptr [edx], ecx
  }
}

上面的代码由 LOCK_IF_MP 预编译标识符和 cmpxchg 函数组成。为了看到更清楚一些,我们将 cmpxchg 函数中的 LOCK_IF_MP 替换为实际内容。如下:

inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {
  // 判断是否是多核 CPU
  int mp = os::is_MP();
  __asm {
    // 将参数值放入寄存器中
    mov edx, dest    // 注意: dest 是指针类型,这里是把内存地址存入 edx 寄存器中
    mov ecx, exchange_value
    mov eax, compare_value
  
    // LOCK_IF_MP
    cmp mp, 0
    /*
     * 如果 mp = 0,表明是线程运行在单核 CPU 环境下。此时 je 会跳转到 L0 标记处,
     * 也就是越过 _emit 0xF0 指令,直接执行 cmpxchg 指令。也就是不在下面的 cmpxchg 指令
     * 前加 lock 前缀。
     */
    je L0
    /*
     * 0xF0 是 lock 前缀的机器码,这里没有使用 lock,而是直接使用了机器码的形式。至于这样做的
     * 原因可以参考知乎的一个回答:
     *     https://www.zhihu.com/question/50878124/answer/123099923
     */
    _emit 0xF0
L0:
    /*
     * 比较并交换。简单解释一下下面这条指令,熟悉汇编的朋友可以略过下面的解释:
     *   cmpxchg: 即“比较并交换”指令
     *   dword: 全称是 double word,在 x86/x64 体系中,一个
     *          word = 2 byte,dword = 4 byte = 32 bit
     *   ptr: 全称是 pointer,与前面的 dword 连起来使用,表明访问的内存单元是一个双字单元
     *   [edx]: [...] 表示一个内存单元,edx 是寄存器,dest 指针值存放在 edx 中。
     *          那么 [edx] 表示内存地址为 dest 的内存单元
     *        
     * 这一条指令的意思就是,将 eax 寄存器中的值(compare_value)与 [edx] 双字内存单元中的值
     * 进行对比,如果相同,则将 ecx 寄存器中的值(exchange_value)存入 [edx] 内存单元中。
     */
    cmpxchg dword ptr [edx], ecx
  }
}

到这里 CAS 的实现过程就讲了,CAS 的实现离不开处理器的支持。以上这么多代码,其实核心代码就是一条带 lock 前缀的 cmpxchg 指令,即lock cmpxchg dword ptr [edx], ecx

通过上述的分析,可以发现AtomicInteger原子类的内部几乎是基于前面分析过Unsafe类中的CAS相关操作的方法实现的,这也同时证明AtomicInteger getAndIncrement自增操作实现过程,是基于无锁实现的。

CAS的ABA问题及其解决方案

假设这样一种场景,当第一个线程执行CAS(V,E,U)操作。在获取到当前变量V,准备修改为新值U前,另外两个线程已连续修改了两次变量V的值,使得该值又恢复为旧值,这样的话,我们就无法正确判断这个变量是否已被修改过,如下图:

这就是典型的CAS的ABA问题,一般情况这种情况发现的概率比较小,可能发生了也不会造成什么问题,比如说我们对某个做加减法,不关心数字的过程,那么发生ABA问题也没啥关系。但是在某些情况下还是需要防止的,那么该如何解决呢?在Java中解决ABA问题,我们可以使用以下原子类

AtomicStampedReference类

AtomicStampedReference原子类是一个带有时间戳的对象引用,在每次修改后,AtomicStampedReference不仅会设置新值而且还会记录更改的时间。当AtomicStampedReference设置对象值时,对象值以及时间戳都必须满足期望值才能写入成功,这也就解决了反复读写时,无法预知值是否已被修改的窘境

底层实现为: 通过Pair私有内部类存储数据和时间戳, 并构造volatile修饰的私有实例

接着看 java.util.concurrent.atomic.AtomicStampedReference类的compareAndSet()方法的实现:

private static class Pair<T> {
    final T reference;
    final int stamp;
  
    //最好不要重复的一个数据,决定数据是否能设置成功,时间戳会重复
    private Pair(T reference, int stamp) {
        this.reference = reference;
        this.stamp = stamp;
    }
    static <T> Pair<T> of(T reference, int stamp) {
        return new Pair<T>(reference, stamp);
    }
}

同时对当前数据和当前时间进行比较,只有两者都相等是才会执行casPair()方法,

单从该方法的名称就可知是一个CAS方法,最终调用的还是Unsafe类中的compareAndSwapObject方法

到这我们就很清晰AtomicStampedReference的内部实现思想了,

通过一个键值对Pair存储数据和时间戳,在更新时对数据和时间戳进行比较,

只有两者都符合预期才会调用UnsafecompareAndSwapObject方法执行数值和时间戳替换,也就避免了ABA的问题。

/**
 * 原子更新带有版本号的引用类型。
 * 该类将整数值与引用关联起来,可用于原子的更数据和数据的版本号。
 * 可以解决使用CAS进行原子更新时,可能出现的ABA问题。
 */
public class AtomicStampedReference<V> {
    //静态内部类Pair将对应的引用类型和版本号stamp作为它的成员
    private static class Pair<T> {
      
        //最好不要重复的一个数据,决定数据是否能设置成功,建议时间戳
        final T reference;
        final int stamp;
        private Pair(T reference, int stamp) {
            this.reference = reference;
            this.stamp = stamp;
        }
      
        //根据reference和stamp来生成一个Pair的实例
        static <T> Pair<T> of(T reference, int stamp) {
            return new Pair<T>(reference, stamp);
        }
    }
  
    //作为一个整体的pair变量被volatile修饰
    private volatile Pair<V> pair;
 
    //构造方法,参数分别是初始引用变量的值和初始版本号
    public AtomicStampedReference(V initialRef, int initialStamp) {
        pair = Pair.of(initialRef, initialStamp);
    }
  
    ....
  
    private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
  
    private static final long pairOffset = objectFieldOffset(UNSAFE, "pair", AtomicStampedReference.class);
 
    //获取pair成员的偏移地址
    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
                                  String field, Class<?> klazz) {
        try {
            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
        } catch (NoSuchFieldException e) {
            NoSuchFieldError error = new NoSuchFieldError(field);
            error.initCause(e);
            throw error;
        }
    }
}


/**
 * @param 期望(老的)引用
 * @param       (新的)引用数据
 * @param 期望(老的)标志stamp(时间戳)值
 * @param       (新的)标志stamp(时间戳)值
 * @return 是否成功
 */
public boolean compareAndSet(V expectedReference,V   newReference,int expectedStamp,int newStamp) {
       
    Pair<V> current = pair;
    return
        // 期望(老的)引用 == 当前引用
        expectedReference == current.reference &&
        // 期望(老的)标志stamp(时间戳)值 == 当前标志stamp(时间戳)值
        expectedStamp == current.stamp &&
      
        // (新的)引用数据 == 当前引用数据 并且 (新的)标志stamp(时间戳)值 ==当前标志stamp(时间戳)值
        ((newReference == current.reference && newStamp == current.stamp) ||
          #原子更新值
         casPair(current, Pair.of(newReference, newStamp)));
       
}
 
 //当引用类型的值与期望的一致的时候,原子的更改版本号为新的值。该方法只修改版本号,不修改引用变量的值,成功返回true
public boolean attemptStamp(V expectedReference, int newStamp) {
    Pair<V> current = pair;
    return
        expectedReference == current.reference &&
        (newStamp == current.stamp ||
         casPair(current, Pair.of(expectedReference, newStamp)));
}

/**
 * CAS真正实现方法
 */
private boolean casPair(Pair<V> cmp, Pair<V> val) {
        return UNSAFE.compareAndSwapObject(this, pairOffset, cmp, val);
}

期望 Pair cmp(A) == 当前内存存偏移量位置 Pair(V),就更新值 Pair val(B)成功返回true 否则 false

public static void main(String[] args) {
    AtomicStampedReference<Integer> num = new AtomicStampedReference<Integer>(1, 0);

    Integer i = num.getReference();
    int stamped = num.getStamp();

    if (num.compareAndSet(i, i + 1, stamped, stamped + 1)) {
        System.out.println("测试成功");
    }
}

通过以上原子更新方法,可见 AtomicStampedReference就是利用了Unsafe的CAS方法+Volatile关键字对存储实际的引用变量和int的版本号的Pair实例进行更新。

参考:
https://www.cnblogs.com/nullllun/p/9039049.html
https://blog.csdn.net/a67474506/article/details/48310515

Contact

  • 作者:鹏磊
  • 出处:http://www.ymq.io/2018/05/09/dubbo
  • 版权归作者所有,转载请注明出处
  • Wechat:关注公众号,搜云库,专注于开发技术的研究与知识分享

关注公众号-搜云库

相关文章
|
缓存 Java Apache
Java并发基础
并发:多个线程操作相同的资源,保证线程安全,合理使用资源 高并发:服务能同时处理很多请求,提高程序性能 (12306抢票,双十一) 关于高并发的一些基础的概念 CPU多级缓存 在Cache(高速缓存出现之后,系统变得更加复杂,高速缓存与主存之间的差异被拉大。
1101 0
|
安全 Java Linux
Java 并发基础
Java 并发基础 标签 : Java基础 线程简述 线程是进程的执行部分,用来完成一定的任务; 线程拥有自己的堆栈,程序计数器和自己的局部变量,但不拥有系统资源, 他与其他线...
913 0
|
6月前
|
数据可视化 Java 测试技术
Java 编程问题:十一、并发-深入探索1
Java 编程问题:十一、并发-深入探索
75 0
|
6月前
|
存储 设计模式 安全
Java 编程问题:十、并发-线程池、可调用对象和同步器2
Java 编程问题:十、并发-线程池、可调用对象和同步器
59 0
|
6月前
|
缓存 安全 Java
Java 编程问题:十、并发-线程池、可调用对象和同步器1
Java 编程问题:十、并发-线程池、可调用对象和同步器
64 0
|
3月前
|
安全 Java 调度
解锁Java并发编程高阶技能:深入剖析无锁CAS机制、揭秘魔法类Unsafe、精通原子包Atomic,打造高效并发应用
【8月更文挑战第4天】在Java并发编程中,无锁编程以高性能和低延迟应对高并发挑战。核心在于无锁CAS(Compare-And-Swap)机制,它基于硬件支持,确保原子性更新;Unsafe类提供底层内存操作,实现CAS;原子包java.util.concurrent.atomic封装了CAS操作,简化并发编程。通过`AtomicInteger`示例,展现了线程安全的自增操作,突显了这些技术在构建高效并发程序中的关键作用。
69 1
|
12天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
2月前
|
Java API 容器
JAVA并发编程系列(10)Condition条件队列-并发协作者
本文通过一线大厂面试真题,模拟消费者-生产者的场景,通过简洁的代码演示,帮助读者快速理解并复用。文章还详细解释了Condition与Object.wait()、notify()的区别,并探讨了Condition的核心原理及其实现机制。
|
4月前
|
安全 Java 开发者
Java并发编程:理解并发安全与性能优化
在当今软件开发中,Java作为一种广泛使用的编程语言,其并发编程能力显得尤为重要。本文深入探讨了Java中的并发编程,包括如何确保并发安全性以及优化并发程序的性能。通过分析常见的并发问题和解决方案,读者将能够更好地理解如何利用Java的并发工具包来构建可靠和高效的多线程应用程序。 【7月更文挑战第10天】
58 3
|
5月前
|
Java 调度
Java多线程编程与并发控制策略
Java多线程编程与并发控制策略