Django之路——6 Django的模型层(二)

简介: 多表操作 创建模型 实例:我们来假定下面这些概念,字段和关系 作者模型:一个作者有姓名和年龄。 作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息。

多表操作

创建模型

实例:我们来假定下面这些概念,字段和关系

作者模型:一个作者有姓名和年龄。

作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息。作者详情模型和作者模型之间是一对一的关系(one-to-one)

出版商模型:出版商有名称,所在城市以及email。

书籍模型: 书籍有书名和出版日期,一本书可能会有多个作者,一个作者也可以写多本书,所以作者和书籍的关系就是多对多的关联关系(many-to-many);一本书只应该由一个出版商出版,所以出版商和书籍是一对多关联关系(one-to-many)。

模型建立如下:

复制代码
from django.db import models

# Create your models here.


class Author(models.Model):
    nid = models.AutoField(primary_key=True)
    name=models.CharField( max_length=32)
    age=models.IntegerField()

    # 与AuthorDetail建立一对一的关系
    authorDetail=models.OneToOneField(to="AuthorDetail",on_delete=models.CASCADE)
class AuthorDetail(models.Model): nid = models.AutoField(primary_key=True) birthday=models.DateField() telephone=models.BigIntegerField() addr=models.CharField( max_length=64) class Publish(models.Model): nid = models.AutoField(primary_key=True) name=models.CharField( max_length=32) city=models.CharField( max_length=32) email=models.EmailField() class Book(models.Model): nid = models.AutoField(primary_key=True) title = models.CharField( max_length=32) publishDate=models.DateField() price=models.DecimalField(max_digits=5,decimal_places=2) # 与Publish建立一对多的关系,外键字段建立在多的一方 publish=models.ForeignKey(to="Publish",to_field="nid",on_delete=models.CASCADE) # 与Author表建立多对多的关系,ManyToManyField可以建在两个模型中的任意一个,自动创建第三张表 authors=models.ManyToManyField(to='Author',)
复制代码

 生成表如下:

 

注意事项:

  •  表的名称myapp_modelName,是根据 模型中的元数据自动生成的,也可以覆写为别的名称  
  •  id 字段是自动添加的
  •  对于外键字段,Django 会在字段名上添加"_id" 来创建数据库中的列名
  •  这个例子中的CREATE TABLE SQL 语句使用PostgreSQL 语法格式,要注意的是Django 会根据settings 中指定的数据库类型来使用相应的SQL 语句。
  •  定义好模型之后,你需要告诉Django _使用_这些模型。你要做的就是修改配置文件中的INSTALL_APPSZ中设置,在其中添加models.py所在应用的名称。
  • 外键字段 ForeignKey 有一个 null=True 的设置(它允许外键接受空值 NULL),你可以赋给它空值 None 。

添加表纪录 

操作前先简单的录入一些数据:

publish表:

author表:

authordetail表:

一对多

1
2
3
4
5
6
方式 1 :
    publish_obj = Publish.objects.get(nid = 1 )
    book_obj = Book.objects.create(title = "金瓶眉" ,publishDate = "2012-12-12" ,price = 100 ,publish = publish_obj)
  
方式 2 :
    book_obj = Book.objects.create(title = "金瓶眉" ,publishDate = "2012-12-12" ,price = 100 ,publish_id = 1 )  

核心:book_obj.publish与book_obj.publish_id是什么? 

多对多

复制代码
    # 当前生成的书籍对象
    book_obj=Book.objects.create(title="追风筝的人",price=200,publishDate="2012-11-12",publish_id=1)
    # 为书籍绑定的做作者对象
    yuan=Author.objects.filter(name="yuan").first() # 在Author表中主键为2的纪录
    egon=Author.objects.filter(name="alex").first() # 在Author表中主键为1的纪录

    # 绑定多对多关系,即向关系表book_authors中添加纪录
    book_obj.authors.add(yuan,egon)    #  将某些特定的 model 对象添加到被关联对象集合中。   =======    book_obj.authors.add(*[])
复制代码

数据库表纪录生成如下:

book表 

book_authors表

核心:book_obj.authors.all()是什么?

多对多关系其它常用API:

1
2
3
book_obj.authors.remove()       # 将某个特定的对象从被关联对象集合中去除。    ======   book_obj.authors.remove(*[])
book_obj.authors.clear()        #清空被关联对象集合
book_obj.authors. set ()          #先清空再设置  

more

基于对象的跨表查询

一对多查询(Publish 与 Book)

正向查询(按字段:publish):

1
2
3
4
# 查询主键为1的书籍的出版社所在的城市
book_obj = Book.objects. filter (pk = 1 ).first()
# book_obj.publish 是主键为1的书籍对象关联的出版社对象
print (book_obj.publish.city)  

反向查询(按表名:book_set):

1
2
3
4
5
publish = Publish.objects.get(name = "苹果出版社" )
#publish.book_set.all() : 与苹果出版社关联的所有书籍对象集合
book_list = publish.book_set. all ()    
for  book_obj  in  book_list:
        print (book_obj.title)

一对一查询(Author 与 AuthorDetail)

正向查询(按字段:authorDetail):

1
2
egon = Author.objects. filter (name = "egon" ).first()
print (egon.authorDetail.telephone)

反向查询(按表名:author):

1
2
3
4
5
# 查询所有住址在北京的作者的姓名
 
authorDetail_list = AuthorDetail.objects. filter (addr = "beijing" )
for  obj  in  authorDetail_list:
      print (obj.author.name)

多对多查询 (Author 与 Book)

正向查询(按字段:authors):

1
2
3
4
5
6
# 金瓶眉所有作者的名字以及手机号
 
book_obj = Book.objects. filter (title = "金瓶眉" ).first()
authors = book_obj.authors. all ()
for  author_obj  in  authors:
      print (author_obj.name,author_obj.authorDetail.telephone)

反向查询(按表名:book_set):

1
2
3
4
5
6
# 查询egon出过的所有书籍的名字
 
     author_obj = Author.objects.get(name = "egon" )
     book_list = author_obj.book_set. all ()         #与egon作者相关的所有书籍
     for  book_obj  in  book_list:
         print (book_obj.title)

注意:

你可以通过在 ForeignKey() 和ManyToManyField的定义中设置 related_name 的值来覆写 FOO_set 的名称。例如,如果 Article model 中做一下更改:

1
publish  =  ForeignKey(Book, related_name = 'bookList' )

那么接下来就会如我们看到这般:

1
2
3
4
# 查询 人民出版社出版过的所有书籍
 
publish = Publish.objects.get(name = "人民出版社" )
book_list = publish.bookList. all ()   # 与人民出版社关联的所有书籍对象集合

基于双下划线的跨表查询 

Django 还提供了一种直观而高效的方式在查询(lookups)中表示关联关系,它能自动确认 SQL JOIN 联系。要做跨关系查询,就使用两个下划线来链接模型(model)间关联字段的名称,直到最终链接到你想要的model 为止。

 

'''
    正向查询按字段,反向查询按表名小写用来告诉ORM引擎join哪张表
'''

一对多查询

复制代码
# 练习:  查询苹果出版社出版过的所有书籍的名字与价格(一对多)

    # 正向查询 按字段:publish

    queryResult=Book.objects
            .filter(publish__name="苹果出版社")
            .values_list("title","price")

    # 反向查询 按表名:book

    queryResult=Publish.objects
              .filter(name="苹果出版社")
              .values_list("book__title","book__price")
复制代码

多对多查询  

复制代码
# 练习: 查询alex出过的所有书籍的名字(多对多)

    # 正向查询 按字段:authors:
    queryResult=Book.objects
            .filter(authors__name="yuan")
            .values_list("title")

    # 反向查询 按表名:book
    queryResult=Author.objects
              .filter(name="yuan")
              .values_list("book__title","book__price")
复制代码

一对一查询

复制代码
    # 查询alex的手机号
    
    # 正向查询
    ret=Author.objects.filter(name="alex").values("authordetail__telephone")

    # 反向查询
    ret=AuthorDetail.objects.filter(author__name="alex").values("telephone")
复制代码

进阶练习(连续跨表)

复制代码
# 练习: 查询人民出版社出版过的所有书籍的名字以及作者的姓名


    # 正向查询
    queryResult=Book.objects
            .filter(publish__name="人民出版社")
            .values_list("title","authors__name")
    # 反向查询
    queryResult=Publish.objects
              .filter(name="人民出版社")
              .values_list("book__title","book__authors__age","book__authors__name")


# 练习: 手机号以151开头的作者出版过的所有书籍名称以及出版社名称

# 方式1: queryResult=Book.objects             .filter(authors__authorDetail__telephone__regex="151")             .values_list("title","publish__name") # 方式2: ret=Author.objects .filter(authordetail__telephone__startswith="151") .values("book__title","book__publish__name")
复制代码

related_name

反向查询时,如果定义了related_name ,则用related_name替换表名,例如:

1
publish  =  ForeignKey(Blog, related_name = 'bookList' )
复制代码
# 练习: 查询人民出版社出版过的所有书籍的名字与价格(一对多)

# 反向查询 不再按表名:book,而是related_name:bookList

queryResult=Publish.objects               .filter(name="人民出版社")               .values_list("bookList__title","bookList__price")
复制代码

聚合查询与分组查询

聚合

aggregate(*args, **kwargs)

1
2
3
4
# 计算所有图书的平均价格
     >>>  from  django.db.models  import  Avg
     >>> Book.objects. all ().aggregate(Avg( 'price' ))
     { 'price__avg' 34.35 }

aggregate()QuerySet 的一个终止子句,意思是说,它返回一个包含一些键值对的字典。键的名称是聚合值的标识符,值是计算出来的聚合值。键的名称是按照字段和聚合函数的名称自动生成出来的。如果你想要为聚合值指定一个名称,可以向聚合子句提供它。

1
2
>>> Book.objects.aggregate(average_price = Avg( 'price' ))
{ 'average_price' 34.35 }

如果你希望生成不止一个聚合,你可以向aggregate()子句中添加另一个参数。所以,如果你也想知道所有图书价格的最大值和最小值,可以这样查询:

1
2
3
>>>  from  django.db.models  import  Avg,  Max Min
>>> Book.objects.aggregate(Avg( 'price' ),  Max ( 'price' ),  Min ( 'price' ))
{ 'price__avg' 34.35 'price__max' : Decimal( '81.20' ),  'price__min' : Decimal( '12.99' )}

分组

复制代码
###################################--单表分组查询--#######################################################

查询每一个部门名称以及对应的员工数

emp:

id  name age   salary    dep
1   alex  12   2000     销售部
2   egon  22   3000     人事部
3   wen   22   5000     人事部


sql语句:
select dep,Count(*) from emp group by dep;

ORM:
emp.objects.values("dep").annotate(c=Count("id")

###################################--多表分组查询--###########################


多表分组查询:

查询每一个部门名称以及对应的员工数


emp:

id  name age   salary   dep_id
1   alex  12   2000       1
2   egon  22   3000       2
3   wen   22   5000       2


dep

id   name 
1    销售部
2    人事部



emp-dep:

id  name age   salary   dep_id   id   name 
1   alex  12   2000       1      1    销售部
2   egon  22   3000       2      2    人事部
3   wen   22   5000       2      2    人事部


sql语句:
select dep.name,Count(*) from emp left join dep on emp.dep_id=dep.id group by dep.id

ORM:
dep.objetcs.values("id").annotate(c=Count("emp")).values("name","c")
复制代码
  View Code

annotate()为调用的QuerySet中每一个对象都生成一个独立的统计值(统计方法用聚合函数)。

总结 :跨表分组查询本质就是将关联表join成一张表,再按单表的思路进行分组查询。 

查询练习

(1) 练习:统计每一个出版社的最便宜的书

1
2
3
publishList = Publish.objects.annotate(MinPrice = Min ( "book__price" ))
for  publish_obj  in  publishList:
     print (publish_obj.name,publish_obj.MinPrice)

annotate的返回值是querySet,如果不想遍历对象,可以用上valuelist:

queryResult= Publish.objects
            .annotate(MinPrice=Min("book__price"))
            .values_list("name","MinPrice")
print(queryResult)
  View Code

(2) 练习:统计每一本书的作者个数

ret=Book.objects.annotate(authorsNum=Count('authors__name'))

(3) 统计每一本以py开头的书籍的作者个数:

 queryResult=Book.objects
           .filter(title__startswith="Py")
           .annotate(num_authors=Count('authors'))

(4) 统计不止一个作者的图书:

queryResult=Book.objects
          .annotate(num_authors=Count('authors'))
          .filter(num_authors__gt=1)

(5) 根据一本图书作者数量的多少对查询集 QuerySet进行排序:

1
Book.objects.annotate(num_authors = Count( 'authors' )).order_by( 'num_authors' )

(6) 查询各个作者出的书的总价格:

#   按author表的所有字段 group by
    queryResult=Author.objects
              .annotate(SumPrice=Sum("book__price"))
              .values_list("name","SumPrice") print(queryResult)

F查询与Q查询

F查询

在上面所有的例子中,我们构造的过滤器都只是将字段值与某个常量做比较。如果我们要对两个字段的值做比较,那该怎么做呢?

Django 提供 F() 来做这样的比较。F() 的实例可以在查询中引用字段,来比较同一个 model 实例中两个不同字段的值。

1
2
3
4
# 查询评论数大于收藏数的书籍
 
    from  django.db.models  import  F
    Book.objects. filter (commnetNum__lt = F( 'keepNum' ))

Django 支持 F() 对象之间以及 F() 对象和常数之间的加减乘除和取模的操作。

1
2
# 查询评论数大于收藏数2倍的书籍
     Book.objects. filter (commnetNum__lt = F( 'keepNum' ) * 2 )

修改操作也可以使用F函数,比如将每一本书的价格提高30元:

1
Book.objects. all ().update(price = F( "price" ) + 30 ) 

Q查询

filter() 等方法中的关键字参数查询都是一起进行“AND” 的。 如果你需要执行更复杂的查询(例如OR 语句),你可以使用对象

1
2
from  django.db.models  import  Q
Q(title__startswith = 'Py' )

Q 对象可以使用& 和| 操作符组合起来。当一个操作符在两个Q 对象上使用时,它产生一个新的Q 对象。

1
bookList = Book.objects. filter (Q(authors__name = "yuan" )|Q(authors__name = "egon" ))

等同于下面的SQL WHERE 子句:

1
WHERE name  = "yuan"  OR name  = "egon"

你可以组合& 和|  操作符以及使用括号进行分组来编写任意复杂的Q 对象。同时,Q 对象可以使用~ 操作符取反,这允许组合正常的查询和取反(NOT) 查询:

1
bookList = Book.objects. filter (Q(authors__name = "yuan" ) & ~Q(publishDate__year = 2017 )).values_list( "title" )

查询函数可以混合使用Q 对象和关键字参数。所有提供给查询函数的参数(关键字参数或Q 对象)都将"AND”在一起。但是,如果出现Q 对象,它必须位于所有关键字参数的前面。例如:

1
2
3
bookList = Book.objects. filter (Q(publishDate__year = 2016 ) | Q(publishDate__year = 2017 ),
                               title__icontains = "python"
                              )
目录
相关文章
|
8月前
|
SQL 数据库 索引
Django MTV - 模型层 - (专题)知识要点与实战案例
Django MTV - 模型层 - (专题)知识要点与实战案例
97 0
|
7月前
|
关系型数据库 MySQL 数据库
数据迁移脚本优化过程:从 MySQL 到 Django 模型表
在大规模的数据迁移过程中,性能问题往往是开发者面临的主要挑战之一。本文将分析一个数据迁移脚本的优化过程,展示如何从 MySQL 数据库迁移数据到 Django 模型表,并探讨优化前后的性能差异。
|
3月前
|
机器学习/深度学习 前端开发 网络架构
Django如何调用机器学习模型进行预测
Django如何调用机器学习模型进行预测
87 5
|
3月前
|
机器学习/深度学习 监控 数据挖掘
基于Django和百度飞桨模型的情感识别Web系统
基于Django和百度飞桨模型的情感识别Web系统
55 5
|
3月前
|
机器学习/深度学习 算法 搜索推荐
django调用矩阵分解推荐算法模型做推荐系统
django调用矩阵分解推荐算法模型做推荐系统
48 4
|
3月前
|
存储 开发框架 JSON
【查漏补缺】Django模型字段类型及其应用
【查漏补缺】Django模型字段类型及其应用
32 0
|
5月前
|
机器学习/深度学习 前端开发 数据挖掘
基于Python Django的房价数据分析平台,包括大屏和后台数据管理,有线性、向量机、梯度提升树、bp神经网络等模型
本文介绍了一个基于Python Django框架开发的房价数据分析平台,该平台集成了多种机器学习模型,包括线性回归、SVM、GBDT和BP神经网络,用于房价预测和市场分析,同时提供了前端大屏展示和后台数据管理功能。
129 9
|
5月前
|
存储 数据库 开发者
Django Web架构:全面掌握Django模型字段(下)
Django Web架构:全面掌握Django模型字段(下)
75 2
|
5月前
|
API 数据库 开发者
【独家揭秘】Django ORM高手秘籍:如何玩转数据模型与数据库交互的艺术?
【8月更文挑战第31天】本文通过具体示例详细介绍了Django ORM的使用方法,包括数据模型设计与数据库操作的最佳实践。从创建应用和定义模型开始,逐步演示了查询、创建、更新和删除数据的全过程,并展示了关联查询与过滤的技巧,帮助开发者更高效地利用Django ORM构建和维护Web应用。通过这些基础概念和实践技巧,读者可以更好地掌握Django ORM,提升开发效率。
54 0
|
5月前
|
SQL Shell API
python Django教程 之 模型(数据库)、自定义Field、数据表更改、QuerySet API
python Django教程 之 模型(数据库)、自定义Field、数据表更改、QuerySet API