Improved IDF2JSON

简介:

The last version eliminated all comments because they are not needed in the JSON format. But the comments can be used as properties. So, I did some modifications. Since I am not familiar with Fortran. All the work is done with Python by replacing characters to change the structure. The results are shown below:

{

"_Version": "8.8",

"_Timestep": "4",

"_Building": {

" Name": "Simple One Zone w Windows",

" North Axis (deg)": "0",

" Terrain": "Suburbs",

" Loads Convergence Tolerance Value": "0.04",

" Temperature Convergence Tolerance Value (deltaC)": "0.004",

" Solar Distribution": "MinimalShadowing",

" Maximum Number of Warmup Days": "30",

" Minimum Number of Warmup Days": "6"

},

"_HeatBalanceAlgorithm": "ConductionTransferFunction",

"_SurfaceConvectionAlgorithm___Inside": "TARP",

"_SurfaceConvectionAlgorithm___Outside": "DOE-2",

"_SimulationControl": {

" Do Zone Sizing Calculation": "No",

" Do System Sizing Calculation": "No",

" Do Plant Sizing Calculation": "No",

" Run Simulation for Sizing Periods": "Yes",

" Run Simulation for Weather File Run Periods": "No"

},

"_RunPeriod": {

" Name": "Null",

" Begin Month": "1",

" Begin Day of Month": "1",

" End Month": "12",

" End Day of Month": "31",

" Day of Week for Start Day": "Tuesday",

" Use Weather File Holidays and Special Days": "Yes",

" Use Weather File Daylight Saving Period": "Yes",

" Apply Weekend Holiday Rule": "No",

" Use Weather File Rain Indicators": "Yes",

" Use Weather File Snow Indicators": "Yes"

},

"_Site___Location": {

" Name": "Denver Stapleton Intl Arpt CO USA WMO=724690",

" Latitude (deg)": "39.77",

" Longitude (deg)": "-104.87",

" Time Zone (hr)": "-7.00",

" Elevation (m)": "1611.00"

},

"_SizingPeriod___DesignDay": {

" Name": "Denver Stapleton Intl Arpt Ann Clg 1% Condns DB=>MWB",

" Month": "7",

" Day of Month": "21",

" Day Type": "SummerDesignDay",

" Maximum Dry-Bulb Temperature (C)": "32.6",

" Daily Dry-Bulb Temperature Range (deltaC)": "15.2",

" Dry-Bulb Temperature Range Modifier Type": "Null",

" Dry-Bulb Temperature Range Modifier Day Schedule Name": "Null",

" Humidity Condition Type": "Wetbulb",

" Wetbulb or DewPoint at Maximum Dry-Bulb (C)": "15.6",

" Humidity Condition Day Schedule Name": "Null",

" Humidity Ratio at Maximum Dry-Bulb (kgWater/kgDryAir)": "Null",

" Enthalpy at Maximum Dry-Bulb (J/kg)": "Null",

" Daily Wet-Bulb Temperature Range (deltaC)": "Null",

" Barometric Pressure (Pa)": "83411.",

" Wind Speed (m/s)": "4",

" Wind Direction (deg)": "120",

" Rain Indicator": "No",

" Snow Indicator": "No",

" Daylight Saving Time Indicator": "No",

" Solar Model Indicator": "ASHRAEClearSky",

" Beam Solar Day Schedule Name": "Null",

" Diffuse Solar Day Schedule Name": "Null",

" ASHRAE Clear Sky Optical Depth for Beam Irradiance (taub) (dimensionless)": "Null",

" ASHRAE Clear Sky Optical Depth for Diffuse Irradiance (taud) (dimensionless)": "Null",

" Sky Clearness": "1.00"

},

"_Material___NoMass": {

" Name": "R31LAYER",

" Roughness": "Rough",

" Thermal Resistance (m2-K/W)": "5.456",

" Thermal Absorptance": "0.9000000",

" Solar Absorptance": "0.7500000",

" Visible Absorptance": "0.7500000"

},

"_Material": {

" Name": "C5 - 4 IN HW CONCRETE",

" Roughness": "MediumRough",

" Thickness (m)": "0.1014984",

" Conductivity (W/m-K)": "1.729577",

" Density (kg/m3)": "2242.585",

" Specific Heat (J/kg-K)": "836.8000",

" Thermal Absorptance": "0.9000000",

" Solar Absorptance": "0.6500000",

" Visible Absorptance": "0.6500000"

},

"_Construction": {

" Name": "ROOF31",

" Outside Layer": "R31LAYER"

},

"_Construction___WindowDataFile": {

" Name": "DoubleClear",

" File Name": "..BACKSLASHdatasetsBACKSLASHWindow5DataFile.dat"

},

"_Site___GroundTemperature___BuildingSurface": "18.89,18.92,19.02,19.12,19.21,19.23,19.07,19.32,19.09,19.21,19.13,18.96",

"_Zone": {

" Name": "ZONE ONE",

" Direction of Relative North (deg)": "0",

" X Origin (m)": "0",

" Y Origin (m)": "0",

" Z Origin (m)": "0",

" Type": "1",

" Multiplier": "1",

" Ceiling Height (m)": "autocalculate",

" Volume (m3)": "autocalculate"

},

"_ScheduleTypeLimits": {

" Name": "Fraction",

" Lower Limit Value": "0.0",

" Upper Limit Value": "1.0",

" Numeric Type": "CONTINUOUS"

},

"_GlobalGeometryRules": {

" Starting Vertex Position": "UpperLeftCorner",

" Vertex Entry Direction": "CounterClockWise",

" Coordinate System": "World"

},

"_BuildingSurface___Detailed": {

" Name": "Zn001___Roof001",

" Surface Type": "Roof",

" Construction Name": "ROOF31",

" Zone Name": "ZONE ONE",

" Outside Boundary Condition": "Outdoors",

" Outside Boundary Condition Object": "Null",

" Sun Exposure": "SunExposed",

" Wind Exposure": "WindExposed",

" View Factor to Ground": "0",

" Number of Vertices": "4",

" X,Y,Z ==> Vertex 1 (m)": "0.000000,15.24000,4.572",

" X,Y,Z ==> Vertex 2 (m)": "0.000000,0.000000,4.572",

" X,Y,Z ==> Vertex 3 (m)": "15.24000,0.000000,4.572",

" X,Y,Z ==> Vertex 4 (m)": "15.24000,15.24000,4.572"

},

"_FenestrationSurface___Detailed": {

" Name": "Zn001_Wall001_Win001",

" Surface Type": "Window",

" Construction Name": "DoubleClear",

" Building Surface Name": "Zn001___Wall001",

" Outside Boundary Condition Object": "Null",

" View Factor to Ground": "0.5000000",

" Shading Control Name": "Null",

" Frame and Divider Name": "Null",

" Multiplier": "1.0",

" Number of Vertices": "4",

" X,Y,Z ==> Vertex 1 (m)": "0.548000,0,2.5000",

" X,Y,Z ==> Vertex 2 (m)": "0.548000,0,0.5000",

" X,Y,Z ==> Vertex 3 (m)": "5.548000,0,0.5000",

" X,Y,Z ==> Vertex 4 (m)": "5.548000,0,2.5000"

},

"_Output___Variable": "ZN001___WALL001___WIN001,Surface Outside Face Temperature,timestep",

"_Output___VariableDictionary": "Regular",

"_Output___Surfaces___Drawing": "dxf",

"_Output___Surfaces___List": "details",

"_Output___Constructions": "Constructions",

"_Output___Meter___MeterFileOnly": "EnergyTransfer___Facility,hourly",

"_OutputControl___Table___Style": {

" Column Separator": "HTML"

},

"_Output___Table___SummaryReports": {

" Report 1 Name": "AllSummary"

}

}

目录
相关文章
|
1月前
|
安全 JavaScript 前端开发
Python Tricks: A Shocking Truth About String Formatting(二)
Python Tricks: A Shocking Truth About String Formatting(二)
|
1月前
|
Python
Python Tricks: A Shocking Truth About String Formatting(一)
Python Tricks: A Shocking Truth About String Formatting(一)
|
3月前
|
TensorFlow API 算法框架/工具
【Tensorflow】解决Inputs to eager execution function cannot be Keras symbolic tensors, but found [<tf.Te
文章讨论了在使用Tensorflow 2.3时遇到的一个错误:"Inputs to eager execution function cannot be Keras symbolic tensors...",这个问题通常与Tensorflow的eager execution(急切执行)模式有关,提供了三种解决这个问题的方法。
42 1
|
6月前
|
自然语言处理 算法 Python
[SentencePiece]论文解读:SentencePiece: A simple and language independent subword tokenizer...
[SentencePiece]论文解读:SentencePiece: A simple and language independent subword tokenizer...
86 0
|
机器学习/深度学习 自然语言处理 测试技术
Query and Extract Refining Event Extraction as Type-oriented Binary Decoding 论文解读
事件抽取通常被建模为一个多分类问题,其中事件类型和论元角色被视为原子符号。这些方法通常仅限于一组预定义的类型。
70 0
|
机器学习/深度学习 自然语言处理 数据挖掘
UnifiedEAE: A Multi-Format Transfer Learning Model for Event Argument Extraction via Variational论文解读
事件论元抽取(Event argument extraction, EAE)旨在从文本中抽取具有特定角色的论元,在自然语言处理中已被广泛研究。
89 0
|
机器学习/深度学习 自然语言处理 搜索推荐
TSAR: A Two-Stream AMR-enhanced Model for Document-level Event Argument Extraction论文解读
以往的研究大多致力于从单个句子中抽取事件,而文档级别的事件抽取仍未得到充分的研究。在本文中,我们专注于从整个文档中抽取事件论元
204 0
|
机器学习/深度学习 人工智能 自然语言处理
One SPRING to Rule Them Both Symmetric AMR Semantic Parsing and Generation without Complex Pipeline
在文本到AMR解析中,当前最先进的语义解析器集成了几个不同模块或组件的繁琐管道,并利用图重新分类,即在训练集的基础上开发的一组特定内容的启发式方法。
130 0
|
机器学习/深度学习 算法 数据挖掘
【多标签文本分类】Large Scale Multi-label Text Classification with Semantic Word Vectors
【多标签文本分类】Large Scale Multi-label Text Classification with Semantic Word Vectors
159 0
【多标签文本分类】Large Scale Multi-label Text Classification with Semantic Word Vectors
|
机器学习/深度学习 算法 数据挖掘
Re18:读论文 GCI Everything Has a Cause: Leveraging Causal Inference in Legal Text Analysis
Re18:读论文 GCI Everything Has a Cause: Leveraging Causal Inference in Legal Text Analysis
Re18:读论文 GCI Everything Has a Cause: Leveraging Causal Inference in Legal Text Analysis