机器学习算法 --- 线性回归

简介: 一、线性回归算法的简介   线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。

一、线性回归算法的简介

   线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。

  回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

  本文主要介绍线性回归算法的演绎推导,关于线性回归的详细介绍请参阅线性回归在百度百科中的介绍

  线性回归算法是机器学习中的基础算法,所以对于想要学习机器学习的读者来说,最好完全理解该算法。

二、线性回归算法的演绎推导

  假设,在银行中申请行用卡的额度与如下两个参数有关,即年龄和工资,有一申请人的资料如下图,那么知道一个人的年龄和工资该如何预测出他所能申请信用卡的额度呢?

  对于一个线性关系,我们使用y=ax+b表示,但在这种关系中y只受一个x的影响,二者的关系可用一条直线近似表示,这种关系也叫一元线性回归。而在本例中,设额度为h,工资和年龄分别为x1和x2,则可以表示成下式,,在这种关系中结果收到多个变量的影响,称为多元线性回归分析。

  我们将上式中的θ和x分别表示成两个一维矩阵[θ0   θ1   θ2]和[x0   x1   x2],则可将上式化为(令x0=1)。

  而实际结果不可能完全符合我们的计算结果,所以两者之间必定存在误差,假设对于第i个样本,存在如下关系,,其中为真实误差。

  误差独立并且具有相同的分布(通常认为是均值为0的高斯分布)。

  所以可以得到下式:

            

  那么,如果存在大量的样本,我们就可以通过做关于θ的参数估计,

  求似然函数如下:

          

  对上式求对数:

        

  对上式求导,使其值为0,便可求得θ的最大似然估计。

  在上式中,被标记的两部分都是常数,前一部分求导后为零,后一部分为一个因数,不会影响最终结果。所以,对于最终结果,只需让未被标记的部分求导后为0。所以使:

        

  将上式化简,并对θ求偏导:

        

  将求导的结果设值为0,便可求得θ的最大似然估计(最小二乘法),

        

  得到θ后,我们即通过样本训练出了一个线性回归模型,便可使用对结果未知的数据进行预测。

  PS: 读者只需理解改算法的推导过程即可,对于数据的计算,编程解决即可,无需手动计算(对于多维矩阵的计算量相当大,而且很容易算错 ( ̄▽ ̄)")。

目录
相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
153 4
|
12天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
100 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
2天前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
30 14
|
28天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
49 2
|
1月前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
60 1
|
2月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
2月前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
46 0
|
9天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。