机器学习算法 --- 逻辑回归及梯度下降

简介: 一、逻辑回归简介  logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。  logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。

一、逻辑回归简介

  logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。

  logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。

  其公式如下:

        

  其图像如下:

        

  我们通过观察上面的图像可以发现,逻辑回归的值域为(0, 1),当输入为0时,其输出为0.5;当输入小于0,并且越来越小时,其输出越来越接近于0;相反的,当其输入大于0,并且越来越大时,其输出越来越接近于1。

  通常我们使用线性回归来预测值,但逻辑回归随有“回归”二字,却通常是用来解决二分类问题的。

  当其输出大于0.5时,我们可以认为该样本属于甲类;小于0.5时,认为该样本属于已类。

  但是由于一个样本数据通常会有多个特征,我们不能将其直接带入logistic回归公式中,所以,就需要借助之前所介绍的线性回归,使该样本的多个特征值生成一个特定的值,在带入公式中,对其分类,所以z的表达式如下:

    

  即可得到对于一个数据关于逻辑回归的详细表达式:

    

  通过上式,我们就可以对一个任意数据进行逻辑回归分析了,但是这当中存在一个问题,即关于θ的取值,只有公式中的θ已知,我们才能对一个未分类的数据运用此公式,那么该如何求得θ呢?

请看下面的公式推导。

二、Logistic Regression公式推导

  在上面,我们得到  后,需要求得θ,关于如何求得θ,将在此进行详细分析。

  通常在机器学习中,我们常常有一个过程叫训练,所谓训练,即通过已知分类(或标签)的数据,求得一个模型(或分离器),然后使用这个模型对未知标签的数据打上标签(或者对其进行分类)。

  所以,我们使用样本(即已知分类的数据),进行一系列的估算,得到θ。这个过程在概率论中叫做参数估计。

  在此,我们将使用极大似然估计的推导过程,求得关于计算θ的公式:

    (1) 首先我们令:

      

    (2) 将上述两式整合:

        

    (3) 求其似然函数:

      

    (4) 对其似然函数求对数:

       

    (5) 当似然函数为最大值时,得到的θ即可认为是模型的参数。求似然函数的最大值,我们可以使用一种方法,梯度上升,但我们可以对似然函数稍作处理,使之变为梯度下降,然后使用梯度下降的思想来求解此问题,变换

  的表达式如下:

       (由于乘了一个负的系数,所以梯度上升变梯度下降。)

    (6) 因为我们要使用当前的θ值通过更新得到新的θ值,所以我们需要知道θ更新的方向(即当前θ是加上一个数还是减去一个数离最终结果近),所以得到J(θ)后对其求导便可得到更新方向(为什么更新方向这么求?以及得到更新方向后为什么按照下面的式子处理?请看下方的梯度下降公式的演绎推导),求导过程如下:

      

    (7) 得到更新方向后便可使用下面的式子不断迭代更新得到最终结果。

        

三、梯度下降公式的演绎推导

  关于求解函数的最优解(极大值和极小值),在数学中我们一般会对函数求导,然后让导数等于0,获得方程,然后通过解方程直接得到结果。但是在机器学习中,我们的函数常常是多维高阶的,得到导数为0的方程后很难直接求解(有些时候甚至不能求解),所以就需要通过其他方法来获得这个结果,而梯度下降就是其中一种。

  对于一个最简单的函数:, 我们该如何求出y最小是x的值呢(不通过解2x = 0的方法)?  

    (1) 首先对x任取一个值,比如x = -4,可以得到一个y值。  

    (2) 求得更新方向(如果不求更新方向对x更新,比如x-0.5,或x+0.5,得到图像如下)。

      可以发现,我们如果是向负方向更新x,那么我就偏离了最终的结果,此时我们应该向正方向更新,所以我们在对x更新前需要求得x的更新方向(这个更新方向不是固定的,应该根据当前值确定,比如当x=4时,应向负方向更新)

      求其导函数在这一点的值,y' = 2x,x = -4, y' = -8,那么它的更新方向就是y',对x更新我们只需x:=x-α·y'(α(大于0)为更新步长,在机器学习中,我们叫它学习率)。

      PS:之前说了是多维高阶方程,无法求解,而不是不能对其求导,所以可以对其求导,然后将当前x带入。

    (3) 不断重复之前的(1),(2)步,直到x收敛。

  

  梯度下降方法:

    对于这个式子,如果:

      (1) m是样本总数,即每次迭代更新考虑所有的样本,那么就叫做批量梯度下降(BGD),这种方法的特点是很容易求得全局最优解,但是当样本数目很多时,训练过程会很慢。当样本数量很少的时候使用它。

      (2)当m = 1,即每次迭代更新只考虑一个样本,公式为,叫做随机梯度下降(SGD),这种方法的特点是训练速度快,但是准确度下降,并不是全局最优。比如对下列函数(当x=9.5时,最终求得是区部最优解):

      (3) 所以综上两种方法,当m为所有样本数量的一部分(比如m=10),即我们每次迭代更新考虑一小部分的样本,公式为,叫做小批量梯度下降(MBGD),它克服了上述两种方法的缺点而又兼顾它们的优点,在实际环境中最常被使用。

 

目录
相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
26天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 算法 Python
“探秘机器学习的幕后英雄:梯度下降——如何在数据的海洋中寻找那枚失落的钥匙?”
【10月更文挑战第11天】梯度下降是机器学习和深度学习中的核心优化算法,用于最小化损失函数,找到最优参数。通过计算损失函数的梯度,算法沿着负梯度方向更新参数,逐步逼近最小值。常见的变种包括批量梯度下降、随机梯度下降和小批量梯度下降,各有优缺点。示例代码展示了如何用Python和NumPy实现简单的线性回归模型训练。掌握梯度下降有助于深入理解模型优化机制。
30 2
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
55 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
15天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
机器学习/深度学习 算法 知识图谱
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
|
1月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)