深度学习与自动驾驶领域的数据集(KITTI,Oxford,Cityscape,Comma.ai,BDDV,TORCS,Udacity,GTA,CARLA,Carcraft)

简介: http://blog.csdn.net/solomon1558/article/details/70173223 Torontocity HCI middlebury caltech 行人检测数据集 ISPRS航拍数据集 mot challenge跟踪数据集数据集名称KITTI 很知名的数据集 数据集链接 http://www.cvlibs.net/datasets/kitti/Oxford RobotCar 对牛津的一部分连续的道路进行了上百次数据采集,收集到了多种天气、行人和交通情况下的数据,也有建筑和道路施工时的数据。
http://blog.csdn.net/solomon1558/article/details/70173223 

Torontocity 
HCI 
middlebury 
caltech 行人检测数据集 
ISPRS航拍数据集 
mot challenge跟踪数据集

数据集名称

KITTI

论文链接 http://www.webmail.cvlibs.net/publications/Geiger2012CVPR.pdf

Oxford RobotCar

论文链接 http://robotcar-dataset.robots.ox.ac.uk/images/robotcar_ijrr.pdf 
Over the period of May 2014 to December 2015 we traversed a route through central Oxford twice a week on average using the Oxford RobotCar platform, an autonomous Nissan LEAF. This resulted in over 1000km of recorded driving with almost 20 million images collected from 6 cameras mounted to the vehicle, along with LIDAR, GPS and INS ground truth. 
数据集采集时走过的路线: 
这里写图片描述
Data was collected in all weather conditions, including heavy rain, night, direct sunlight and snow. Road and building works over the period of a year significantly changed sections of the route from the beginning to the end of data collection.

By frequently traversing the same route over the period of a year we enable research investigating long-term localisation and mapping for autonomous vehicles in real-world, dynamic urban environments. 
在不同天气、光线情况和交通状况下的数据集中的示例图: 
这里写图片描述

Cityscape

论文链接 https://arxiv.org/pdf/1604.01685.pdf 


这里写图片描述

Comma.ai

论文链接 https://arxiv.org/pdf/1608.01230.pdf 
论文中对于数据集的描述如下 
这里写图片描述

Udacity

Udacity为其自动驾驶算法比赛专门准备的数据集 
The dataset includes driving in Mountain View California and neighboring cities during daylight conditions. It contains over 65,000 labels across 9,423 frames collected from a Point Grey research cameras running at full resolution of 1920x1200 at 2hz. The dataset was annotated by CrowdAI using a combination of machine learning and humans. 
Labels 
Car 
Truck 
Pedestrian 
这里写图片描述 
This dataset is similar to dataset 1 but contains additional fields for occlusion and an additional label for traffic lights. The dataset was annotated entirely by humans using Autti and is slightly larger with 15,000 frames.

Labels 
Car 
Truck 
Pedestrian 
Street Lights 
这里写图片描述

BDDV

论文链接 http://10.254.1.82/cache/8/03/openaccess.thecvf.com/1042c57ea5ddadd8cb802b7cb2e84b8e/Xu_End-To-End_Learning_of_CVPR_2017_paper.pdf

Berkeley的deepdrive研究组的用于自动驾驶的大规模数据集。包括视频数据集,图像分割数据集,目标检测和可行驶区域的数据集。 
视频数据集: 
Explore over 400 hours of HD video sequences across many different times in the day, weather conditions, and driving scenarios. Our video sequences also include GPS locations, IMU data, and timestamps. 
分割数据集: 
Explore over 5000 diverse images with pixel-level and rich instance-level annotations.

GTA5

中文名侠盗猎车手?一款赛车游戏,现在也被用来训练自动驾驶的模型。 
GTA5中几乎涵盖了各种各样的道路状况,包括山区、郊区和城市。还有各种各样的车辆,比如警车、救护车、出租车、货车等车型。 
据说Uber的研究人员在训练他们的自动驾驶模型用来玩GTA5这款游戏。

TORCS

This is the official site of TORCS, The Open Racing Car Simulator. TORCS is a highly portable multi platform car racing simulation. It is used as ordinary car racing game, as AI racing game and as research platform. It runs on Linux (all architectures, 32 and 64 bit, little and big endian), FreeBSD, OpenSolaris, MacOSX and Windows (32 and 64 bit). The source code of TORCS is licensed under the GPL (“Open Source”). You find more information about the project in the menu bar on the left. If you need help have a look at the FAQ first, I added a new Researchers section. You can contact us on the torcs-users mailing list (you need to subscribe to use it because of spam).

TORCS features many different cars, tracks, and opponents to race against. You can steer with a joystick or steering wheel, if the device is supported by your platform. It is also possible to drive with the mouse or the keyboard. Graphic features lighting, smoke, skid marks and glowing brake disks. The simulation features a simple damage model, collisions, tire and wheel properties (springs, dampers, stiffness, …), aerodynamics (ground effect, spoilers, …) and much more. The game play allows different types of races from the simple practice session up to the championship. Enjoy racing against your friends in the split screen mode with up to four human players.

TORCS was initially created by Eric Espié and Christophe Guionneau, substantial parts have been added by other contributors (have a look into the “Credits” section for details). The project is currently headed by Bernhard Wymann.The TORCS source code is licensed under the terms of the GNU General Public License (GPL 2), most of the artwork is licensed under the Free Art License, have a look into the packages for details about copyright holders and the licensing.

The next big development goal is an online racing mode. 
这里写图片描述

CARLA

论文链接 https://arxiv.org/pdf/1711.03938.pdf 
英特尔&丰田联合开源城市驾驶模拟器CARLA 
CARLA is an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. 
这里写图片描述

Carcraft

谷歌母公司Alphabet的自动驾驶子公司Waymo开发的一款软件,用来在诸如加州山景城和得克萨斯州奥斯汀等虚拟重建城市中测试无人驾驶汽车软件。该公司每天要开1287万公里的虚拟里程,专注于特别棘手的道路状况。 
在虚拟的奥斯汀、山景城、凤凰城,以及那些模拟的测试场景里,有25000辆虚拟的无人车穿梭其中。它们每天总共要行驶800万英里(约1287万公里),去年一整年,Waymo的虚拟无人车行驶了25亿英里,而实体测试车全年累积的里程,只有300万英里。这里写图片描述 
这里写图片描述

另外,Waymo还在美国加州中央山谷地区的小城默塞德附近建了一个叫做castle的无人驾驶基地,综合了多种路况,利用多种道具建立了一个小型“城市”。

目录
相关文章
|
21天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
77 9
|
3天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶汽车中的应用####
【10月更文挑战第21天】 本文探讨了深度学习中的卷积神经网络(CNN)如何革新自动驾驶车辆的视觉感知能力,特别是在复杂多变的道路环境中实现高效准确的物体检测与分类。通过分析CNN架构设计、数据增强策略及实时处理优化等关键技术点,揭示了该技术在提升自动驾驶系统环境理解能力方面的潜力与挑战。 ####
16 0
|
9天前
|
机器学习/深度学习 传感器 自动驾驶
深度学习在自动驾驶中的应用与挑战####
本文探讨了深度学习技术在自动驾驶领域的应用现状、面临的主要挑战及未来发展趋势。通过分析卷积神经网络(CNN)和循环神经网络(RNN)等关键算法在环境感知、决策规划中的作用,结合特斯拉Autopilot和Waymo的实际案例,揭示了深度学习如何推动自动驾驶技术向更高层次发展。文章还讨论了数据质量、模型泛化能力、安全性及伦理道德等问题,为行业研究者和开发者提供了宝贵的参考。 ####
|
15天前
|
传感器 机器学习/深度学习 人工智能
自动驾驶汽车中的AI:从概念到现实
【10月更文挑战第31天】自动驾驶汽车曾是科幻概念,如今正逐步成为现实。本文探讨了自动驾驶汽车的发展历程,从早期的机械控制到现代的AI技术应用,包括传感器融合、计算机视觉、路径规划和决策控制等方面。尽管面临安全性和法规挑战,自动驾驶汽车在商用运输、公共交通和乘用车领域展现出巨大潜力,未来将为人类带来更安全、便捷、环保的出行方式。
|
20天前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
46 2
|
26天前
|
机器学习/深度学习 人工智能 自动驾驶
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
本文介绍了AI和大模型在机器人、自动驾驶和智能座舱领域的最新应用和技术进展。涵盖多模态大语言模型在机器人控制中的应用、移动机器人(AMRs)的规模化部署、协作机器人的智能与安全性提升、AR/VR技术在机器人培训中的应用、数字孪生技术的优化作用、Rust语言在机器人编程中的崛起,以及大模型在自动驾驶中的核心地位、端到端自动驾驶解决方案、全球自动驾驶的前沿进展、智能座舱的核心技术演变和未来发展趋势。
50 2
|
1月前
|
机器学习/深度学习 自动驾驶 算法
深度学习中的图像识别技术及其在自动驾驶中的应用
【10月更文挑战第4天】本文深入探讨了深度学习在图像识别领域的应用,并特别关注其在自动驾驶系统中的关键作用。文章首先介绍了深度学习的基本概念和工作原理,随后通过一个代码示例展示了如何利用深度学习进行图像分类。接着,文章详细讨论了图像识别技术在自动驾驶中的具体应用,包括物体检测、场景理解和决策制定等方面。最后,文章分析了当前自动驾驶技术面临的挑战和未来的发展趋势。
42 4
|
1月前
|
机器学习/深度学习 传感器 自动驾驶
深度学习在自动驾驶技术中的革新与挑战
【10月更文挑战第4天】深度学习在自动驾驶技术中的革新与挑战
67 4
|
21天前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
52 0
|
21天前
|
机器学习/深度学习 数据采集 人工智能
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第26天】近年来,深度学习技术在医学影像诊断中的应用日益广泛,通过训练大量医学影像数据,实现对疾病的准确诊断。例如,卷积神经网络(CNN)已成功用于识别肺癌、乳腺癌等疾病。深度学习不仅提高了诊断准确性,还缩短了诊断时间,提升了患者体验。然而,数据隐私、数据共享和算法透明性等问题仍需解决。未来,AI将在医学影像诊断中发挥更大作用,成为医生的得力助手。
51 0

热门文章

最新文章

下一篇
无影云桌面