第一步:准备好需要的库
- tensorflow-gpu 1.8.0
- opencv-python 3.3.1
- numpy
- skimage
- os
- pillow
第二步:准备数据集:
链接:https://pan.baidu.com/s/1Kbz_UaRhAfhlweFY28R8Sw 密码:iym3
本次使用了花朵分类的数据集,总共有5类
每类里面有不同形态的同一类花朵
在下载完数据集之后,我们对数据集进行预处理:
from skimage import io, transform import os import numpy as np # 将所有的图片resize成100*100 w = 100 h = 100 c = 3 # 读取图片 def read_img(path): imgs = [] labels = [] classs = os.listdir(path) for idx, folder in enumerate(classs): cate = os.path.join(path, folder) for im in os.listdir(cate): img_path =os.path.join(cate, im) # print('reading the images:%s' % (img_path)) img = io.imread(img_path) img = transform.resize(img, (w, h)) # with open('tests.txt', 'a') as f: # f.write(img_path+'_'+str(idx)+'\n') imgs.append(img) labels.append(idx) return np.asarray(imgs, np.float32), np.asarray(labels, np.int32) def suffer(data, label): # 打乱顺序 num_example = data.shape[0] arr = np.arange(num_example) np.random.shuffle(arr) data = data[arr] label = label[arr] # 将所有数据分为训练集和验证集 ratio = 0.8 s = np.int(num_example * ratio) x_train = data[:s] y_train = label[:s] x_val = data[s:] y_val = label[s:] return x_train,y_train,x_val,y_val def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False): assert len(inputs) == len(targets) if shuffle: indices = np.arange(len(inputs)) np.random.shuffle(indices) for start_idx in range(0, len(inputs) - batch_size + 1, batch_size): if shuffle: excerpt = indices[start_idx:start_idx + batch_size] else: excerpt = slice(start_idx, start_idx + batch_size) yield inputs[excerpt], targets[excerpt]
我们将图片统一设为100×100的大小,然后对每一个文件夹标号,作为标签。为了检验我们是否将标签与图片对齐,我预留了一个写文件路径+标签的一个文件。
写出来是这样的
在做处理好标签和图片之后我们将其设定为 np.asarray(imgs, np.float32)的格式。
然后将这些图片随机打乱顺序。以8:2的比例划分训练集和验证集。
接着我们来生成minibatch:将数据切分成batch_size的大小送入网络。
在预处理完数据之后,我们开始进行网络的构建
import tensorflow as tf def batch_norm(x, momentum=0.9, epsilon=1e-5, train=True, name='bn'): return tf.layers.batch_normalization(x, momentum=momentum, epsilon=epsilon, scale=True, training=train, name=name) def simple_cnn(x): # 第一个卷积层(100——>50) conv1 = tf.layers.conv2d( inputs=x, filters=32, kernel_size=[3, 3], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) conv1 = batch_norm(conv1, name='pw_bn1') pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) # 第二个卷积层(50->25) conv2 = tf.layers.conv2d( inputs=pool1, filters=64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) conv2 = batch_norm(conv2, name='pw_bn2') pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2) # 第三个卷积层(25->12) conv3 = tf.layers.conv2d( inputs=pool2, filters=128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) conv3 = batch_norm(conv3, name='pw_bn3') pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=2) # 第四个卷积层(12->6) conv4 = tf.layers.conv2d( inputs=pool3, filters=128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) conv4 = batch_norm(conv4, name='pw_bn4') pool4 = tf.layers.max_pooling2d(inputs=conv4, pool_size=[2, 2], strides=2) re1 = tf.reshape(pool4, [-1, 6 * 6 * 128]) # 全连接层 dense1 = tf.layers.dense(inputs=re1, units=1024, activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003)) dense2 = tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003)) logits = tf.layers.dense(inputs=dense2, units=5, activation=None, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003)) pred = tf.nn.softmax(logits, name='prob') return logits, pred
我们的网络由4个卷积层,两个全连接层,一个softmax层组成。在每一层的卷积后面加入了batch_normalization,relu和池化。
batch_normalization层很好用,加上它之后,有效的预防了梯度消逝和爆炸,还加速了收敛。
在搭建好网络之后,我们开始编写训练模块
import tensorflow as tf import cnn import dataset # 将所有的图片resize成100*100 w = 100 h = 100 c = 3 path = 'flowers' x = tf.placeholder(tf.float32, shape=[None, w, h, c], name='x') y_ = tf.placeholder(tf.int32, shape=[None, ], name='y_') logits,pred = cnn.simple_cnn(x) loss = tf.losses.sparse_softmax_cross_entropy(labels=y_, logits=logits) train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) correct_prediction = tf.equal(tf.cast(tf.argmax(logits, 1), tf.int32), y_) acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) data, label = dataset.read_img(path) x_train, y_train,x_val, y_val = dataset.suffer(data, label) # 训练和测试数据,可将n_epoch设置更大一些 n_epoch = 11 batch_size = 16 def train(): sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() for epoch in range(n_epoch): train_loss, train_acc, n_batch = 0, 0, 0 for x_train_a, y_train_a in dataset.minibatches(x_train, y_train, batch_size, shuffle=True): _, err, ac = sess.run([train_op, loss, acc], feed_dict={x: x_train_a, y_: y_train_a}) train_loss += err train_acc += ac n_batch += 1 print('Epoch %d - train loss: %f'%(epoch, (train_loss / n_batch))) print('Epoch %d - train acc: %f'%(epoch,train_acc / n_batch)) # validation val_loss, val_acc, n_batch = 0, 0, 0 for x_val_a, y_val_a in dataset.minibatches(x_val, y_val, batch_size, shuffle=False): err, ac = sess.run([loss, acc], feed_dict={x: x_val_a, y_: y_val_a}) val_loss += err val_acc += ac n_batch += 1 print('Epoch %d - Validation loss: %f' %(epoch, val_loss / n_batch)) print('Epoch %d - Validation Accuracy: %f'%( epoch,(val_acc / n_batch))) if epoch % 5 == 0: saver.save(sess, "./model/save_net.ckpt",epoch) print('Trained Model Saved.') train()
训练时我们首先要定义X,Y作为索引
x = tf.placeholder(tf.float32, shape=[None, w, h, c], name='x') y_ = tf.placeholder(tf.int32, shape=[None, ], name='y_')
然后对于刚才构建的网络进行损失的计算,精确度计算以及优化器的选择。
接着我们将session初始化
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
然后将定义的X,Y索引与你的真实数据,标签对齐。
使用
_, err, ac = sess.run([train_op, loss, acc], feed_dict={x: x_train_a, y_: y_train_a})
开始运行就可以了。
测试同理,不过测试的时候不需要优化器,所以只需要加入参数loss,acc就可以了。
我们每隔5次保存一次模型。
在训练结束后,我们对使用之前训练好的模型进行预测:
import numpy as np import tensorflow as tf from PIL import Image, ImageDraw, ImageFont from cnn import simple_cnn # 将所有的图片resize成100*100 w = 100 h = 100 c = 3 classes = ['daisy','dandelion','roses','sunflowers','tulips'] image_test = Image.open('44079668_34dfee3da1_n.jpg') resized_image = image_test.resize((w, h), Image.BICUBIC) image_data = np.array(resized_image, dtype='float32') imgs_holder = tf.placeholder(tf.float32, shape=[1, w, h, c]) logits,pred = simple_cnn(imgs_holder) saver = tf.train.Saver() ckpt_dir = './model/' with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(ckpt_dir) saver.restore(sess, ckpt.model_checkpoint_path) classes_ = sess.run(pred,feed_dict={ imgs_holder: np.reshape(image_data , [1, w, h, c])}) num = np.argmax(classes_) print('class is :',classes[int(num)],' Probability is :',classes_[0][int(num)])
在预测时,因为子还需要输入一张图片就可以了,所以我们只制作图片的索引
imgs_holder = tf.placeholder(tf.float32, shape=[1, w, h, c])
然后读取刚才保存的参数,只需要输入目录,即可自动读取最后训练的模型。
然后运行:
classes_ = sess.run(pred,feed_dict={ imgs_holder: np.reshape(image_data , [1, w, h, c])})
输出每个类的概率值。
我们将这个概率最大的值的标号读取出来,对应之前文件夹的标号。
classes = ['daisy','dandelion','roses','sunflowers','tulips']
然后将这个标号对应的概率数标出来。
本次使用了tf.layer进行了简单CNN的构建,并且使用了tensorflow传统的sess.run
的方法来运行图,没有使用之前提到的高级API。
在这种方法上进行了简单的尝试,接下来会尝试使用slim框架构建网络。