Storm的ack机制在项目应用中的坑

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
简介: 正在学习storm的大兄弟们,我又来传道授业解惑了,是不是觉得自己会用ack了。好吧,那就让我开始啪啪打你们脸吧。 先说一下ACK机制:   为了保证数据能正确的被处理, 对于spout产生的每一个tuple, storm都会进行跟踪。

正在学习storm的大兄弟们,我又来传道授业解惑了,是不是觉得自己会用ack了。好吧,那就让我开始啪啪打你们脸吧。

先说一下ACK机制:

  为了保证数据能正确的被处理, 对于spout产生的每一个tuple, storm都会进行跟踪。

  这里面涉及到ack/fail的处理,如果一个tuple处理成功是指这个Tuple以及这个Tuple产生的所有Tuple都被成功处理, 会调用spout的ack方法;

  如果失败是指这个Tuple或这个Tuple产生的所有Tuple中的某一个tuple处理失败, 则会调用spout的fail方法;

  在处理tuple的每一个bolt都会通过OutputCollector来告知storm, 当前bolt处理是否成功。

  另外需要注意的,当spout触发fail动作时,不会自动重发失败的tuple,需要我们在spout中重新获取发送失败数据,手动重新再发送一次。

Ack原理
  Storm中有个特殊的task名叫acker,他们负责跟踪spout发出的每一个Tuple的Tuple树(因为一个tuple通过spout发出了,经过每一个bolt处理后,会生成一个新的tuple发送出去)。当acker(框架自启动的task)发现一个Tuple树已经处理完成了,它会发送一个消息给产生这个Tuple的那个task。
Acker的跟踪算法是Storm的主要突破之一,对任意大的一个Tuple树,它只需要恒定的20字节就可以进行跟踪。
Acker跟踪算法的原理:acker对于每个spout-tuple保存一个ack-val的校验值,它的初始值是0,然后每发射一个Tuple或Ack一个Tuple时,这个Tuple的id就要跟这个校验值异或一下,并且把得到的值更新为ack-val的新值。那么假设每个发射出去的Tuple都被ack了,那么最后ack-val的值就一定是0。Acker就根据ack-val是否为0来判断是否完全处理,如果为0则认为已完全处理。

要实现ack机制:
1,spout发射tuple的时候指定messageId
2,spout要重写BaseRichSpout的fail和ack方法
3,spout对发射的tuple进行缓存(否则spout的fail方法收到acker发来的messsageId,spout也无法获取到发送失败的数据进行重发),看看系统提供的接口,只有msgId这个参数,这里的设计不合理,其实在系统里是有cache整个msg的,只给用户一个messageid,用户如何取得原来的msg貌似需要自己cache,然后用这个msgId去查询,太坑爹了
3,spout根据messageId对于ack的tuple则从缓存队列中删除,对于fail的tuple可以选择重发。
4,设置acker数至少大于0;Config.setNumAckers(conf, ackerParal);

Storm的Bolt有BsicBolt和RichBolt:
  在BasicBolt中,BasicOutputCollector在emit数据的时候,会自动和输入的tuple相关联,而在execute方法结束的时候那个输入tuple会被自动ack。
  使用RichBolt需要在emit数据的时候,显示指定该数据的源tuple要加上第二个参数anchor tuple,以保持tracker链路,即collector.emit(oldTuple, newTuple);并且需要在execute执行成功后调用OutputCollector.ack(tuple), 当失败处理时,执行OutputCollector.fail(tuple);

由一个tuple产生一个新的tuple称为:anchoring,你发射一个tuple的同时也就完成了一次anchoring。

  ack机制即,spout发送的每一条消息,在规定的时间内,spout收到Acker的ack响应,即认为该tuple 被后续bolt成功处理;在规定的时间内(默认是30秒),没有收到Acker的ack响应tuple,就触发fail动作,即认为该tuple处理失败,timeout时间可以通过Config.TOPOLOGY_MESSAGE_TIMEOUT_SECS来设定。或者收到Acker发送的fail响应tuple,也认为失败,触发fail动作

  注意,我开始以为如果继承BaseBasicBolt那么程序抛出异常,也会让spout进行重发,但是我错了,程序直接异常停止了

  这里我以分布式程序入门案例worldcount为例子吧。请看下面大屏幕:没有错我就是那个你们走在路上经常听见的名字刘洋。

  这里spout1-1task发送句子"i am liu yang"给bolt2-2task进行处理,该task把句子切分为单词,根据字段分发到下一个bolt中,bolt2-2,bolt4-4,bolt5-5对每一个单词添加一个后缀1后再发送给下一个bolt进行存储到数据库的操作,这个时候bolt7-7task在存储数据到数据库时失败,向spout发送fail响应,这个时候spout收到消息就会再次发送的该数据。

  好,那么我思考一个问题:spout如何保证再次发送的数据就是之前失败的数据,所以在spout实例中,绝对要定义一个map缓存,缓存发出去的每一条数据,key当然就是messageId,当spout实例收到所有bolt的响应后如果是ack,就会调用我们重写的ack方法,在这个方法里面我们就要根据messageId删除这个key-value,如果spout实例收到所有bolt响应后,发现是faile,则会调用我们重写的fail方法,根据messageId查询到对应的数据再次发送该数据出去。

spout代码如下

public class MySpout extends BaseRichSpout {
    private static final long serialVersionUID = 5028304756439810609L;

    // key:messageId,Data
    private HashMap<String, String> waitAck = new HashMap<String, String>();

    private SpoutOutputCollector collector;

    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("sentence")); } public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) { this.collector = collector; } public void nextTuple() { String sentence = "i am liu yang"; String messageId = UUID.randomUUID().toString().replaceAll("-", ""); waitAck.put(messageId, sentence); //指定messageId,开启ackfail机制 collector.emit(new Values(sentence), messageId); } @Override public void ack(Object msgId) { System.out.println("消息处理成功:" + msgId); System.out.println("删除缓存中的数据..."); waitAck.remove(msgId); } @Override public void fail(Object msgId) { System.out.println("消息处理失败:" + msgId); System.out.println("重新发送失败的信息..."); //重发如果不开启ackfail机制,那么spout的map对象中的该数据不会被删除的。 collector.emit(new Values(waitAck.get(msgId)),msgId); } }

 虽然在storm项目中我们的spout源通常来源kafka,而且我们使用storm提供的工具类KafkaSpout类,其实这个类里面就维护者<messageId,Tuple>对的集合。

Storm怎么处理重复的tuple?
  因为Storm要保证tuple的可靠处理,当tuple处理失败或者超时的时候,spout会fail并重新发送该tuple,那么就会有tuple重复计算的问题。这个问题是很难解决的,storm也没有提供机制帮助你解决。一些可行的策略:
(1)不处理,这也算是种策略。因为实时计算通常并不要求很高的精确度,后续的批处理计算会更正实时计算的误差。
(2)使用第三方集中存储来过滤,比如利用mysql,memcached或者redis根据逻辑主键来去重。
(3)使用bloom filter做过滤,简单高效。

问题一:你们有没有想过如果某一个task节点处理的tuple一直失败,消息一直重发会怎么样?

  我们都知道,spout作为消息的发送源,在没有收到该tuple来至左右bolt的返回信息前,是不会删除的,那么如果消息一直失败,就会导致spout节点存储的tuple数据越来越多,导致内存溢出。

问题二:有没有想过,如果该tuple的众多子tuple中,某一个子tuple处理failed了,但是另外的子tuple仍然会继续执行,如果子tuple都是执行数据存储操作,那么就算整个消息失败,那些生成的子tuple还是会成功执行而不会回滚的。

  这个时候storm的原生api是无法支持这种事务性操作,我们可以使用storm提供的高级api-trident来做到(具体如何我不清楚,目前没有研究它,但是我可以它内部一定是根据分布式协议比如两阶段提交协议等)。向这种业务中要保证事务性功能,我们完全可以根据我们自身的业务来做到,比如这里的入库操作,我们先记录该消息是否已经入库的状态,再入库时查询状态来决定是否给予执行。

问题三:tuple的追踪并不一定要是从spout结点到最后一个bolt,只要是spout开始,可以在任意层次bolt停止追踪做出应答。

Acker task 组件来设置一个topology里面的acker的数量,默认值是一,如果你的topoogy里面的tuple比较多的话,那么请把acker的数量设置多一点,效率会更高一点。

调整可靠性 
acker task是非常轻量级的, 所以一个topology里面不需要很多acker。你可以通过Strom UI(id: -1)来跟踪它的性能。 如果它的吞吐量看起来不正常,那么你就需要多加点acker了。

如果可靠性对你来说不是那么重要 — 你不太在意在一些失败的情况下损失一些数据, 那么你可以通过不跟踪这些tuple树来获取更好的性能。不去跟踪消息的话会使得系统里面的消息数量减少一半, 因为对于每一个tuple都要发送一个ack消息。并且它需要更少的id来保存下游的tuple 减少带宽占用。
有三种方法可以去掉可靠性。
第一是把Config.TOPOLOGY_ACKERS 设置成 0. 在这种情况下, storm会在spout发射一个tuple之后马上调用spoutack方法。也就是说这个tuple树不会被跟踪。
第二个方法是在tuple层面去掉可靠性。 你可以在发射tuple的时候不指定messageid来达到不跟粽某个特定的spout tuple的目的。
最后一个方法是如果你对于一个tuple树里面的某一部分到底成不成功不是很关心,那么可以在发射这些tuple的时候unanchor它们。 这样这些tuple就不在tuple树里面, 也就不会被跟踪了。

可靠性配置

有三种方法可以去掉消息的可靠性:

将参数Config.TOPOLOGY_ACKERS设置为0,通过此方法,当Spout发送一个消息的时候,它的ack方法将立刻被调用;

Spout发送一个消息时,不指定此消息的messageID。当需要关闭特定消息可靠性的时候,可以使用此方法;

最后,如果你不在意某个消息派生出来的子孙消息的可靠性,则此消息派生出来的子消息在发送时不要做锚定,即在emit方法中不指定输入消息。因为这些子孙消息没有被锚定在任何tuple tree中,因此他们的失败不会引起任何spout重新发送消息。

如何关闭Ack机制

2种途径

spout发送数据是不带上msgid

设置acker数等于0

值得注意的一点是Storm调用Ack或者fail的task始终是产生这个tuple的那个task,所以如果一个Spout,被分为很多个task来执行,消息执行的成功失败与否始终会通知最开始发出tuple的那个task。

作为Storm的使用者,有两件事情要做以更好的利用Storm的可靠性特征,首先你在生成一个tuple的时候要通知Storm,其次,完全处理一个tuple之后要通知Storm,这样Storm就可以检测到整个tuple树有没有完成处理,并且通知源Spout处理结果。

1 由于对应的task挂掉了,一个tuple没有被Ack:

Storm的超时机制在超时之后会把这个tuple标记为失败,从而可以重新处理。

2 Acker挂掉了: 在这种情况下,由这个Acker所跟踪的所有spout tuple都会出现超时,也会被重新的处理。

3 Spout 挂掉了:在这种情况下给Spout发送消息的消息源负责重新发送这些消息。

三个基本的机制,保证了Storm的完全分布式,可伸缩的并且高度容错的。

另外Ack机制还常用于限流作用 为了避免spout发送数据太快,而bolt处理太慢,常常设置pending数,当spout有等于或超过pending数的tuple没有收到ackfail响应时,跳过执行nextTuple, 从而限制spout发送数据。

通过conf.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, pending);设置spout pend数。

作者: intsmaze(刘洋)
老铁,你的--->推荐,--->关注,--->评论--->是我继续写作的动力。
微信公众号号:Apache技术研究院
由于博主能力有限,文中可能存在描述不正确,欢迎指正、补充!
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
8天前
|
存储 Kubernetes 持续交付
介绍一下Kubernetes的应用场景
【10月更文挑战第18天】介绍一下Kubernetes的应用场景。
33 3
|
5天前
|
JSON Kubernetes 容灾
ACK One应用分发上线:高效管理多集群应用
ACK One应用分发上线,主要介绍了新能力的使用场景
|
28天前
|
Prometheus Kubernetes 监控
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
|
24天前
|
应用服务中间件 调度 nginx
Kubernetes的Pod调度:让你的应用像乘坐头等舱!
Kubernetes的Pod调度:让你的应用像乘坐头等舱!
|
26天前
|
存储 Kubernetes 负载均衡
基于Ubuntu-22.04安装K8s-v1.28.2实验(四)使用域名访问网站应用
基于Ubuntu-22.04安装K8s-v1.28.2实验(四)使用域名访问网站应用
19 1
|
28天前
|
Kubernetes 负载均衡 应用服务中间件
k8s学习--ingress详细解释与应用(nginx ingress controller))
k8s学习--ingress详细解释与应用(nginx ingress controller))
|
28天前
|
缓存 Kubernetes 负载均衡
k8s学习--sessionAffinity会话保持(又称会话粘滞)详细解释与应用
k8s学习--sessionAffinity会话保持(又称会话粘滞)详细解释与应用
100 0
|
28天前
|
存储 Kubernetes 开发工具
k8s学习--ConfigMap详细解释与应用
ConfigMap 是 Kubernetes 中用于管理非机密配置数据的 API 对象,可将应用配置与容器分离,便于动态管理和更新。它支持四种创建方式:命令行参数、多个文件、文件内的键值对以及 YAML 资源清单文件。ConfigMap 可通过环境变量或挂载为卷的方式传递给 Pod,并且当通过卷挂载时支持热更新。这使得配置管理更加灵活和安全,无需重新部署应用即可更新配置。
|
8天前
|
存储 Kubernetes 监控
深度解析Kubernetes在微服务架构中的应用与优化
【10月更文挑战第18天】深度解析Kubernetes在微服务架构中的应用与优化
30 0
|
8天前
|
运维 Kubernetes 负载均衡
深入探索Kubernetes在微服务架构中的应用
【10月更文挑战第18天】深入探索Kubernetes在微服务架构中的应用
28 0

热门文章

最新文章