Python爬虫之多线程下载豆瓣Top250电影图片

简介: 爬虫项目介绍  本次爬虫项目将爬取豆瓣Top250电影的图片,其网址为:https://movie.douban.com/top250, 具体页面如下图所示:   本次爬虫项目将分别不使用多线程和使用多线程来完成,通过两者的对比,显示出多线程在爬虫项目中的巨大优势。

爬虫项目介绍

  本次爬虫项目将爬取豆瓣Top250电影的图片,其网址为:https://movie.douban.com/top250, 具体页面如下图所示:


豆瓣Top250电影

  本次爬虫项目将分别不使用多线程和使用多线程来完成,通过两者的对比,显示出多线程在爬虫项目中的巨大优势。本文所使用的多线程用到了concurrent.futures模块,该模块是Python中最广为使用的并发库,它可以非常方便地将任务并行化。在concurrent.futures模块中,共有两种并发模块,分别如下:

  • 多线程模式:ThreadPoolExecutor,适合 IO密集型任务;
  • 多进程模式:ProcessPoolExecutor,适合计算密集型任务。

具体的关于该模块的介绍可以参考其官方网址:https://docs.python.org/3/library/concurrent.futures.html
  本次爬虫项目将会用到concurrent.futures模块中的ThreadPoolExecutor类,多线程下载豆瓣Top250电影图片。下面将会给出本次爬虫项目分别不使用多线程和使用多线程的对比,以此来展示多线程在爬虫中的巨大优势。

不使用多线程

  首先,我们不使用多线程来下载豆瓣Top250电影图片,其完整的Python代码如下:

import time
import requests
import urllib.request
from bs4 import BeautifulSoup

# 该函数用于下载图片
# 传入函数: 网页的网址url
def download_picture(url):

    # 获取网页的源代码
    r = requests.get(url)
    # 利用BeautifulSoup将获取到的文本解析成HTML
    soup = BeautifulSoup(r.text, "lxml")
    # 获取网页中的电影图片
    content = soup.find('div', class_='article')
    images = content.find_all('img')
    # 获取电影图片的名称和下载地址
    picture_name_list = [image['alt'] for image in images]
    picture_link_list = [image['src'] for image in images]

    # 利用urllib.request..urlretrieve正式下载图片
    for picture_name, picture_link in zip(picture_name_list, picture_link_list):
        urllib.request.urlretrieve(picture_link, 'E://douban/%s.jpg' % picture_name)


def main():

    # 全部10个网页
    start_urls = ["https://movie.douban.com/top250"]
    for i in range(1, 10):
        start_urls.append("https://movie.douban.com/top250?start=%d&filter=" % (25 * i))

    # 统计该爬虫的消耗时间
    t1 = time.time()
    print('*' * 50)

    for url in start_urls:
        download_picture(url)
    t2 = time.time()

    print('不使用多线程,总共耗时:%s'%(t2-t1))
    print('*' * 50)

main()

其输出结果如下:

**************************************************
不使用多线程,总共耗时:79.93260931968689
**************************************************

去E盘中的douban文件夹查看,如下图:


下载的电影图片

  我们可以看到,在不使用多线程的情况下,这个爬虫总共耗时约80s,完成了豆瓣Top250电影图片的下载。

使用多线程

  接下来,我们使用多线程来下载豆瓣Top250电影图片,其完整的Python代码如下:

import time
import requests
import urllib.request
from bs4 import BeautifulSoup
from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED

# 该函数用于下载图片
# 传入函数: 网页的网址url
def download_picture(url):

    # 获取网页的源代码
    r = requests.get(url)
    # 利用BeautifulSoup将获取到的文本解析成HTML
    soup = BeautifulSoup(r.text, "lxml")
    # 获取网页中的电影图片
    content = soup.find('div', class_='article')
    images = content.find_all('img')
    # 获取电影图片的名称和下载地址
    picture_name_list = [image['alt'] for image in images]
    picture_link_list = [image['src'] for image in images]

    # 利用urllib.request..urlretrieve正式下载图片
    for picture_name, picture_link in zip(picture_name_list, picture_link_list):
        urllib.request.urlretrieve(picture_link, 'E://douban/%s.jpg' % picture_name)


def main():

    # 全部10个网页
    start_urls = ["https://movie.douban.com/top250"]
    for i in range(1, 10):
        start_urls.append("https://movie.douban.com/top250?start=%d&filter=" % (25 * i))

    # 统计该爬虫的消耗时间
    print('*' * 50)
    t3 = time.time()

    # 利用并发下载电影图片
    executor = ThreadPoolExecutor(max_workers=10)  # 可以自己调整max_workers,即线程的个数
    # submit()的参数: 第一个为函数, 之后为该函数的传入参数,允许有多个
    future_tasks = [executor.submit(download_picture, url) for url in start_urls]
    # 等待所有的线程完成,才进入后续的执行
    wait(future_tasks, return_when=ALL_COMPLETED)

    t4 = time.time()
    print('使用多线程,总共耗时:%s' % (t4 - t3))
    print('*' * 50)

main()

其输出结果如下:

**************************************************
使用多线程,总共耗时:9.361606121063232
**************************************************

再去E盘中的douban文件夹查看,发现同样也下载了250张电影图片。

总结

  通过上述两个爬虫程序的对比,我们不难发现,同样是下载豆瓣Top250电影,10个网页中的图片,在没有使用多线程的情况下,总共耗时约80s,而在使用多线程(10个线程)的情况下,总共耗时约9.5秒,效率整整提高了约8倍。这样的效率提升在爬虫中无疑是令人兴奋的。
  希望读者在看了本篇博客后,也能尝试着在自己的爬虫中使用多线程,说不定会有意外的惊喜哦~~因为,大名鼎鼎的Python爬虫框架Scrapy,也是使用多线程来提升爬虫速度的哦!

注意:本人现已开通两个微信公众号: 因为Python(微信号为:python_math)以及轻松学会Python爬虫(微信号为:easy_web_scrape), 欢迎大家关注哦~~

目录
相关文章
|
27天前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
9天前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
21天前
|
Java Unix 调度
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
41 4
|
28天前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
1月前
|
Java Python
python知识点100篇系列(16)-python中如何获取线程的返回值
【10月更文挑战第3天】本文介绍了两种在Python中实现多线程并获取返回值的方法。第一种是通过自定义线程类继承`Thread`类,重写`run`和`join`方法来实现;第二种则是利用`concurrent.futures`库,通过`ThreadPoolExecutor`管理线程池,简化了线程管理和结果获取的过程,推荐使用。示例代码展示了这两种方法的具体实现方式。
python知识点100篇系列(16)-python中如何获取线程的返回值
|
1月前
|
网络协议 安全 Java
难懂,误点!将多线程技术应用于Python的异步事件循环
难懂,误点!将多线程技术应用于Python的异步事件循环
64 0
|
6月前
|
缓存 负载均衡 安全
在Python中,如何使用多线程或多进程来提高程序的性能?
【2月更文挑战第17天】【2月更文挑战第50篇】在Python中,如何使用多线程或多进程来提高程序的性能?
66 4
|
6月前
|
安全 Java 数据处理
Python网络编程基础(Socket编程)多线程/多进程服务器编程
【4月更文挑战第11天】在网络编程中,随着客户端数量的增加,服务器的处理能力成为了一个重要的考量因素。为了处理多个客户端的并发请求,我们通常需要采用多线程或多进程的方式。在本章中,我们将探讨多线程/多进程服务器编程的概念,并通过一个多线程服务器的示例来演示其实现。
|
6月前
|
安全 Python
Python中的并发编程:多线程与多进程技术探究
本文将深入探讨Python中的并发编程技术,重点介绍多线程和多进程两种并发处理方式的原理、应用场景及优缺点,并结合实例分析如何在Python中实现并发编程,以提高程序的性能和效率。
|
6月前
|
数据采集 数据库 C++
python并发编程:并发编程中是选择多线程呢?还是多进程呢?还是多协程呢?
python并发编程:并发编程中是选择多线程呢?还是多进程呢?还是多协程呢?
65 0