Python爬虫之多线程下载豆瓣Top250电影图片

简介: 爬虫项目介绍  本次爬虫项目将爬取豆瓣Top250电影的图片,其网址为:https://movie.douban.com/top250, 具体页面如下图所示:   本次爬虫项目将分别不使用多线程和使用多线程来完成,通过两者的对比,显示出多线程在爬虫项目中的巨大优势。

爬虫项目介绍

  本次爬虫项目将爬取豆瓣Top250电影的图片,其网址为:https://movie.douban.com/top250, 具体页面如下图所示:


豆瓣Top250电影

  本次爬虫项目将分别不使用多线程和使用多线程来完成,通过两者的对比,显示出多线程在爬虫项目中的巨大优势。本文所使用的多线程用到了concurrent.futures模块,该模块是Python中最广为使用的并发库,它可以非常方便地将任务并行化。在concurrent.futures模块中,共有两种并发模块,分别如下:

  • 多线程模式:ThreadPoolExecutor,适合 IO密集型任务;
  • 多进程模式:ProcessPoolExecutor,适合计算密集型任务。

具体的关于该模块的介绍可以参考其官方网址:https://docs.python.org/3/library/concurrent.futures.html
  本次爬虫项目将会用到concurrent.futures模块中的ThreadPoolExecutor类,多线程下载豆瓣Top250电影图片。下面将会给出本次爬虫项目分别不使用多线程和使用多线程的对比,以此来展示多线程在爬虫中的巨大优势。

不使用多线程

  首先,我们不使用多线程来下载豆瓣Top250电影图片,其完整的Python代码如下:

import time
import requests
import urllib.request
from bs4 import BeautifulSoup

# 该函数用于下载图片
# 传入函数: 网页的网址url
def download_picture(url):

    # 获取网页的源代码
    r = requests.get(url)
    # 利用BeautifulSoup将获取到的文本解析成HTML
    soup = BeautifulSoup(r.text, "lxml")
    # 获取网页中的电影图片
    content = soup.find('div', class_='article')
    images = content.find_all('img')
    # 获取电影图片的名称和下载地址
    picture_name_list = [image['alt'] for image in images]
    picture_link_list = [image['src'] for image in images]

    # 利用urllib.request..urlretrieve正式下载图片
    for picture_name, picture_link in zip(picture_name_list, picture_link_list):
        urllib.request.urlretrieve(picture_link, 'E://douban/%s.jpg' % picture_name)


def main():

    # 全部10个网页
    start_urls = ["https://movie.douban.com/top250"]
    for i in range(1, 10):
        start_urls.append("https://movie.douban.com/top250?start=%d&filter=" % (25 * i))

    # 统计该爬虫的消耗时间
    t1 = time.time()
    print('*' * 50)

    for url in start_urls:
        download_picture(url)
    t2 = time.time()

    print('不使用多线程,总共耗时:%s'%(t2-t1))
    print('*' * 50)

main()

其输出结果如下:

**************************************************
不使用多线程,总共耗时:79.93260931968689
**************************************************

去E盘中的douban文件夹查看,如下图:


下载的电影图片

  我们可以看到,在不使用多线程的情况下,这个爬虫总共耗时约80s,完成了豆瓣Top250电影图片的下载。

使用多线程

  接下来,我们使用多线程来下载豆瓣Top250电影图片,其完整的Python代码如下:

import time
import requests
import urllib.request
from bs4 import BeautifulSoup
from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED

# 该函数用于下载图片
# 传入函数: 网页的网址url
def download_picture(url):

    # 获取网页的源代码
    r = requests.get(url)
    # 利用BeautifulSoup将获取到的文本解析成HTML
    soup = BeautifulSoup(r.text, "lxml")
    # 获取网页中的电影图片
    content = soup.find('div', class_='article')
    images = content.find_all('img')
    # 获取电影图片的名称和下载地址
    picture_name_list = [image['alt'] for image in images]
    picture_link_list = [image['src'] for image in images]

    # 利用urllib.request..urlretrieve正式下载图片
    for picture_name, picture_link in zip(picture_name_list, picture_link_list):
        urllib.request.urlretrieve(picture_link, 'E://douban/%s.jpg' % picture_name)


def main():

    # 全部10个网页
    start_urls = ["https://movie.douban.com/top250"]
    for i in range(1, 10):
        start_urls.append("https://movie.douban.com/top250?start=%d&filter=" % (25 * i))

    # 统计该爬虫的消耗时间
    print('*' * 50)
    t3 = time.time()

    # 利用并发下载电影图片
    executor = ThreadPoolExecutor(max_workers=10)  # 可以自己调整max_workers,即线程的个数
    # submit()的参数: 第一个为函数, 之后为该函数的传入参数,允许有多个
    future_tasks = [executor.submit(download_picture, url) for url in start_urls]
    # 等待所有的线程完成,才进入后续的执行
    wait(future_tasks, return_when=ALL_COMPLETED)

    t4 = time.time()
    print('使用多线程,总共耗时:%s' % (t4 - t3))
    print('*' * 50)

main()

其输出结果如下:

**************************************************
使用多线程,总共耗时:9.361606121063232
**************************************************

再去E盘中的douban文件夹查看,发现同样也下载了250张电影图片。

总结

  通过上述两个爬虫程序的对比,我们不难发现,同样是下载豆瓣Top250电影,10个网页中的图片,在没有使用多线程的情况下,总共耗时约80s,而在使用多线程(10个线程)的情况下,总共耗时约9.5秒,效率整整提高了约8倍。这样的效率提升在爬虫中无疑是令人兴奋的。
  希望读者在看了本篇博客后,也能尝试着在自己的爬虫中使用多线程,说不定会有意外的惊喜哦~~因为,大名鼎鼎的Python爬虫框架Scrapy,也是使用多线程来提升爬虫速度的哦!

注意:本人现已开通两个微信公众号: 因为Python(微信号为:python_math)以及轻松学会Python爬虫(微信号为:easy_web_scrape), 欢迎大家关注哦~~

目录
相关文章
|
5天前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
34 20
|
18天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
97 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
2月前
|
数据采集 机器学习/深度学习 前端开发
PHP爬虫性能优化:从多线程到连接池的实现
本文介绍了一种通过多线程技术和连接池优化PHP爬虫性能的方法,以新浪投诉平台为例,详细展示了如何提高数据采集效率和稳定性,解决了传统单线程爬虫效率低下的问题。
114 2
PHP爬虫性能优化:从多线程到连接池的实现
|
3月前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
3月前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
119 0
|
3月前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
3月前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
3月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
193 6
|
3月前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
152 4
|
3月前
|
Java Unix 调度
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
150 4

推荐镜像

更多