吴恩达《深度学习》第二门课(3)超参数调试、Batch正则化和程序框架

简介: 3.1调试处理(1)不同超参数调试的优先级是不一样的,如下图中的一些超参数,首先最重要的应该是学习率α(红色圈出),然后是Momentum算法的β、隐藏层单元数、mini-batch size(黄色圈出)、再之后是Layer、learning rate decay(紫色圈出)、最后是Adam算法中的β1、β2、ε。

3.1调试处理

(1)不同超参数调试的优先级是不一样的,如下图中的一些超参数,首先最重要的应该是学习率α(红色圈出),然后是Momentum算法的β、隐藏层单元数、mini-batch size(黄色圈出)、再之后是Layer、learning rate decay(紫色圈出)、最后是Adam算法中的β1、β2、ε。

(2)用随机取值代替网格点取值。下图左边是网格点取值,如果二维参数中,一个参数调试的影响特别小,那么虽然取了25个点,其实只相当于取了5个不同的点;而右图中随机取值取了多少个点就代表有多少不同值的点。

(3)由粗糙到精细的取值,先粗糙取值,然后发现最好的点,再在这个点附近进行精细的取值。如下图所示

3.2为超参数选择合适的范围

(1)随机取值并不是在取值范围内随机均匀取值,而是要选择合适的标尺来随机取值。

(2)案例1:在选择网络层数时,其范围是[2,4],那么直接均匀取值2,3,4都是合理的。

(3)案例2:如果在给学习率取值时,其范围是[0.0001,1],如果均匀取值,将会有90%的点落在0.1到1之间,这时不合理的;此时应该用对数坐标0.0001=10-4,1=100,所以应该是在[-4,0]上随机均匀取值作为r,然后10r作为学习率α。如下图所示

(4)指数加权平均的超参数β取值范围是[0.9,0.999],其方法是:1-β=[0.1,0.001],然后再根据学习率提到的用对数坐标来随机取值。

(5)在取值微小变化会带来巨大结果不同的地方(β在0.9990到0.9995敏感度就比0.9到0.9005高)即灵敏度高,需要去更多更密集的值,这就是为什么要选择合适的标尺。

3.3超参数训练的实践

(1)当计算资源少的时候,只能一个模型慢慢调参,悉心照顾,当计算资源丰富时,可以模型同时选择不同参数进行训练,然后找出最优的。如下图所示

3.4归一化网络的激活函数

(1)计算过程如下图所示(总共包括四个式子):

(2)特征输入归一化之后均值为0,方差为1,但是对隐藏层的归一化而言,她的均值和方差是空调的,即通过γ、β两个超参数调整。之所以不希望都是均值为0,方差为1,因为那样的话可能都集中再激活函数的线性区域,导致可能没法得到任意想要的值。如下图所示

(3)一般情况下都是对z(即激活函数之前)进行归一化的。

3.5将Batch Norm拟合进神经网络

(1)使用以下公式来进行更新参数,其中原来的b已经可以去掉,因为不管是多少都会在归一化中被消除,然后用新的参数β替代(此处的β是归一化时的参数,不是优化算法中的β):

 

除了以上的这种更新方式之外,也可以用其他优化算法进行更新。

3.6Batch Norm为什么奏效

(1)浅层的理解可以按照之前提到的,把输入特征归一化之后,可以加快训练的思路来理解每一层归一化的作用。

(2)深层原因:当已经学的x到y的映射,然后当x的分布发生变化是,该映射将需要重新学习,这里的x可以理解成中间的某一隐藏层,x的分布是受到它前面层参数的影响的,为了时x的分布尽量不受到影响(这样x到y的映射可以尽量少做调整),所以加入了归一化,这样x的均值可以始终固定为β,方差固定为α。这样即使x值会发生变化,但是其分布是不变的(或者说变得更少),这样一来减弱了前层参数对后层参数的影响,互相之间相对较独立,更有利于各层之间学习自己的映射,这样有助于加速网络的训练。如下图中框选出来的中间层它的值受前面参数影响,同时又是后层的输入,归一化保证了该层的分布不变性。

3.7测试时的Batch Norm

(1)训练时mini-batch有样本来计算均值和方差,如下式子(式子中的m是mini-batch size):

(2)但是在测试集时,是一个一个进行测试的,一个样本求均值和方差是没有意义的。所以使用的到方法就是:在训练是每一个批次获得对应的均值和方差,然后用之前提到的指数加权平均来实时获得最新的均值和方差给测试时来用(当然还有其他估算均值和方差的方法)。有了均值和方差之后,测试数据就可以按照上面的式子进行归一化了,使用的β、γ是训练出来的。

3.8Softmax回归

(1)softmax激活函数常用于多分类问题的最后一层作为激活函数,它将最后一层算出来的z[L]取幂函数,然后求和,最后再把每个单元取幂函数之后都分别除以求和,得到各自的概率输出。如下所示

3.9训练一个Softmax分类器

(1)分类器的损失函数(一个样本):

如四分类器中样本标签(左边)和预测值(右边)如下:

所以损失函数简化为:

(2)代价函数:

3.10深度学习框架

(1)一些常见的深度学习框架

3.11TensorFlow

(1)给一个TensorFlow的简单使用案例:

 

相关文章
|
4月前
|
机器学习/深度学习 自然语言处理
深度学习中的正则化技术:防止过拟合的利器
在深度学习领域,模型的复杂度往往与其性能成正比,但过高的复杂度也容易导致过拟合现象。本文将深入探讨正则化技术在深度学习中的应用,分析其如何通过引入额外信息或限制来优化模型,从而在保持模型复杂度的同时,有效避免过拟合问题。我们将通过具体实例和数据,展示正则化技术的实际效果,并讨论其在不同场景下的应用策略。
|
16天前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
35 7
|
19天前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
64 3
|
2月前
|
机器学习/深度学习 PyTorch TensorFlow
Python实现深度学习学习率指数衰减的方法与参数介绍
学习率指数衰减提供了一种高效的动态调整学习率的手段,帮助模型在不同训练阶段以不同的学习速度优化,有利于提升模型性能和训练效率。通过合理设置衰减策略中的参数,可以有效地控制学习率的衰减过程,实现更加精确的模型训练调优。
39 0
|
3月前
|
机器学习/深度学习 算法 TensorFlow
深入探索强化学习与深度学习的融合:使用TensorFlow框架实现深度Q网络算法及高效调试技巧
【8月更文挑战第31天】强化学习是机器学习的重要分支,尤其在深度学习的推动下,能够解决更为复杂的问题。深度Q网络(DQN)结合了深度学习与强化学习的优势,通过神经网络逼近动作价值函数,在多种任务中表现出色。本文探讨了使用TensorFlow实现DQN算法的方法及其调试技巧。DQN通过神经网络学习不同状态下采取动作的预期回报Q(s,a),处理高维状态空间。
55 1
|
3月前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
52 0
|
3月前
|
UED 开发者
哇塞!Uno Platform 数据绑定超全技巧大揭秘!从基础绑定到高级转换,优化性能让你的开发如虎添翼
【8月更文挑战第31天】在开发过程中,数据绑定是连接数据模型与用户界面的关键环节,可实现数据自动更新。Uno Platform 提供了简洁高效的数据绑定方式,使属性变化时 UI 自动同步更新。通过示例展示了基本绑定方法及使用 `Converter` 转换数据的高级技巧,如将年龄转换为格式化字符串。此外,还可利用 `BindingMode.OneTime` 提升性能。掌握这些技巧能显著提高开发效率并优化用户体验。
64 0
|
3月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习框架之争:全面解析TensorFlow与PyTorch在功能、易用性和适用场景上的比较,帮助你选择最适合项目的框架
【8月更文挑战第31天】在深度学习领域,选择合适的框架至关重要。本文通过开发图像识别系统的案例,对比了TensorFlow和PyTorch两大主流框架。TensorFlow由Google开发,功能强大,支持多种设备,适合大型项目和工业部署;PyTorch则由Facebook推出,强调灵活性和速度,尤其适用于研究和快速原型开发。通过具体示例代码展示各自特点,并分析其适用场景,帮助读者根据项目需求和个人偏好做出明智选择。
69 0
|
4月前
|
机器学习/深度学习 自然语言处理
深入解析深度学习中的正则化技术
【7月更文挑战第21天】深度学习模型在追求高精度的同时,也面临着过拟合的风险。本文将探讨如何通过正则化技术来平衡模型复杂度与泛化能力,包括L1与L2正则化、Dropout、数据增强和早停等策略。我们将分析这些方法的工作原理及其在实际问题中的应用效果,并讨论如何选择合适的正则化技术以优化深度学习模型的性能。
|
4月前
|
机器学习/深度学习
深度学习中的正则化技术探究
【7月更文挑战第15天】 在深度学习的海洋中,正则化技术如同导航灯塔,指引着模型训练的方向,避免其偏离航线进入过拟合的暗礁区。本文将深入探讨正则化技术的奥秘,从它们的起源、种类到实际应用,揭示这些技术如何在防止过拟合的同时,提升模型的泛化能力。我们将穿越不同类型的正则化方法,包括传统的L1和L2正则化,以及更现代的技术如Dropout和数据增强。每种技术都将被剖析其工作原理及适用场景,为深度学习的实践者提供一盏明灯,照亮模型优化之路。

热门文章

最新文章

下一篇
无影云桌面