经典算法详解(10)图中有多少个三角形

简介: 题目:请说出下面图形中包含多少个三角形?请用一个程序完成计算。C++版本 1 #include 2 3 using namespace std; 4 5 const char NO_POINT = '0'; 6 7 //任意的一条线 8 const char *map[]...

题目:请说出下面图形中包含多少个三角形?请用一个程序完成计算。

C++版本

 1 #include<iostream>
 2 
 3 using namespace std;
 4 
 5 const char NO_POINT = '0';
 6 
 7 //任意的一条线
 8 const char *map[] = { "ad","ab","db","ae","aj","ah","ej","eh","jh","af","ak","ai","fk","fi","ki","ag","ac","gc",
 9 "de","df","dg","ef","eg","fg","bj","bk","bg","jk","jg","kg","bh","bi","bc","hi","hc","ic" };
10 //共线的点
11 const char *line[] = { "adb","aejh","afki","agc","defg","bjkg","bhic" };
12 
13 //点是否在线上
14 int contain( const char *str, char a) {
15     int i = 0;
16     while (str[i] != '\0') {        //注意字符使用单引号,字符串是双引号
17         if (str[i] == a)
18             return 1;
19         i++;
20     }
21     return 0;
22 }
23 
24 //三个点是否在一条线上函数
25 int isInALine(const char *str[], char a, char b, char c) {
26     int i ;
27     for (i = 0; i < 7; i++) {
28         if (contain(str[i], a) && contain(str[i], b) && contain(str[i], c)) {
29             return 1;
30         }
31     }
32     return 0;
33 }
34 
35 //两条线的交点函数
36 char getCrossPoint(const char *str1, const char *str2) {
37     if (*str1 == *str2)
38         return *str1;
39     if (*str1 == *(str2 + 1))
40         return *str1;
41     if (*(str1 + 1) == *str2)
42         return *(str1 + 1);
43     if (*(str1 + 1) == *(str2 + 1))
44         return *(str1 + 1);
45     return NO_POINT;
46 }
47 
48 //三条线两两必须有交点,并且三条线不能共线才能构成三角形。
49 int isTriangle(const char *str1, const char *str2, const char *str3) {
50     char Point1, Point2, Point3;
51     Point1 = getCrossPoint(str1, str2);
52     if (Point1 == NO_POINT)
53         return 0;
54     Point2 = getCrossPoint(str1, str3);
55     if (Point2 == NO_POINT)
56         return 0;
57     Point3 = getCrossPoint(str2, str3);
58     if (Point3 == NO_POINT)
59         return 0;
60     if (isInALine(line, Point1, Point2, Point3))
61         return 0;
62     return 1;
63 }
64 
65 int getTriangelCount( const char *str[]) {
66     int i, j, k,count=0;
67     for (i = 0; i < 36; i++) {
68         for (j = i+1; j < 36; j++) {
69             for (k = j+1; k < 36; k++) {
70                 if (isTriangle(str[i], str[j], str[k]))
71                     count++;
72             }
73         }
74     }
75     return count;
76 }
77 
78 int main(int argc, char *argv[]) {
79     cout << getTriangelCount(map);
80     getchar();
81     return 0;
82 }

 解题思路:

(1)给每个交点做标记,如下:

(2)总共有36条线段,如果三条线段两两之间存在交点,但一条线上(已经包含了三条线交于同一点),则可以构成三角形。如下图所示,最左边的构成三角形,右边两个不构成三角形:

(3)故需要有如下一些子函数:求两条线的交点,三个点是否共线等。

目录
打赏
0
0
0
0
30
分享
相关文章
【算法专题突破】双指针 - 有效三角形的个数(5)
【算法专题突破】双指针 - 有效三角形的个数(5)
39 0
|
5月前
|
LeetCode经典算法题:矩阵中省份数量经典题目+三角形最大周长java多种解法详解
LeetCode经典算法题:矩阵中省份数量经典题目+三角形最大周长java多种解法详解
65 6
基于PSO粒子群算法的三角形采集堆轨道优化matlab仿真
该程序利用PSO算法优化5个4*20矩阵中的模块采集轨迹,确保采集的物品数量及元素含量符合要求。在MATLAB2022a上运行,通过迭代寻优,选择最佳模块组合并优化轨道,使采集效率、路径长度及时间等综合指标最优。具体算法实现了粒子状态更新、需求量差值评估及轨迹优化等功能,最终输出最优轨迹及其相关性能指标。
平面中判断点在三角形内算法(重心法)
平面中判断点在三角形内算法(重心法)
51 0
|
5月前
|
空间中判断点在三角形内算法(方程法)
空间中判断点在三角形内算法(方程法)
75 0
|
5月前
|
平面中判断点在三角形内算法(同向法)
平面中判断点在三角形内算法(同向法)
37 0
空间射线与三角形相交算法的两种实现
空间射线与三角形相交算法的两种实现
59 0
|
8月前
|
【优选算法】——Leetcode——611. 有效三角形的个数
【优选算法】——Leetcode——611. 有效三角形的个数
前端算法-最大三角形面积-鞋带公式&-海伦公式
前端算法-最大三角形面积-鞋带公式&-海伦公式
94 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等