爬虫入门之Scrapy框架基础LinkExtractors(十一)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 1 parse()方法的工作机制:1. 因为使用的yield,而不是return。parse函数将会被当做一个生成器使用。

1 parse()方法的工作机制:

1. 因为使用的yield,而不是return。parse函数将会被当做一个生成器使用。scrapy会逐一获取parse方法中生成的结果,并判断该结果是一个什么样的类型;
2. 如果是request则加入爬取队列,如果是item类型则使用pipeline处理,其他类型则返回错误信息。
3. scrapy取到第一部分的request不会立马就去发送这个request,只是把这个request放到队列里,然后接着从生成器里获取;
4. 取尽第一部分的request,然后再获取第二部分的item,取到item了,就会放到对应的pipeline里处理;
5. parse()方法作为回调函数(callback)赋值给了Request,指定parse()方法来处理这些请求                    scrapy.Request(url, callback=self.parse)
6. Request对象经过调度,执行生成 scrapy.http.response()的响应对象,并送回给parse()方法,直到调度器中没有Request(递归的思路)
7. 取尽之后,parse()工作结束,引擎再根据队列和pipelines中的内容去执行相应的操作;
8. 程序在取得各个页面的items前,会先处理完之前所有的request队列里的请求,然后再提取items。
7. 这一切的一切,Scrapy引擎和调度器将负责到底。

2 CrawlSpiders:定义了一些规则跟进link

通过下面的命令可以快速创建 CrawlSpider模板 的代码:

scrapy genspider -t crawl tencent tencent.com

上一个案例中,我们通过正则表达式,制作了新的url作为Request请求参数,现在我们可以换个花样…

class scrapy.spiders.CrawlSpider

它是Spider的派生类,Spider类的设计原则是只爬取start_url列表中的网页,而CrawlSpider类定义了一些规则(rule)来提供跟进link的方便的机制,从爬取的网页中获取link并继续爬取的工作更适合。

源码参考

class CrawlSpider(Spider):
    rules = ()
    def __init__(self, *a, **kw):
        super(CrawlSpider, self).__init__(*a, **kw)
        self._compile_rules()

    #首先调用parse()来处理start_urls中返回的response对象
    #parse()则将这些response对象传递给了_parse_response()函数处理,并设置回调函数为parse_start_url()
    #设置了跟进标志位follow = True
    #parse将返回item和跟进了的Request对象    
    def parse(self, response):
        return self._parse_response(response, self.parse_start_url, cb_kwargs={}, follow=True)

    #处理start_url中返回的response,需要重写
    def parse_start_url(self, response):
        return []

    def process_results(self, response, results):
        return results

    #从response中抽取符合任一用户定义'规则'的链接,并构造成Resquest对象返回
    def _requests_to_follow(self, response):
        if not isinstance(response, HtmlResponse):
            return
        seen = set()
        #抽取之内的所有链接,只要通过任意一个'规则',即表示合法
        for n, rule in enumerate(self._rules):
            links = [l for l in rule.link_extractor.extract_links(response) if l not in seen]
            #使用用户指定的process_links处理每个连接
            if links and rule.process_links:
                links = rule.process_links(links)
            #将链接加入seen集合,为每个链接生成Request对象,并设置回调函数为_repsonse_downloaded()
            for link in links:
                seen.add(link)
                #构造Request对象,并将Rule规则中定义的回调函数作为这个Request对象的回调函数
                r = Request(url=link.url, callback=self._response_downloaded)
                r.meta.update(rule=n, link_text=link.text)
               #对每个Request调用process_request()函数。
               #该函数默认为indentify,即不做任何处理,直接返回该Request.
                yield rule.process_request(r)


    #处理通过rule提取出的连接,并返回item以及request
    def _response_downloaded(self, response):
        rule = self._rules[response.meta['rule']]
        return self._parse_response(response, rule.callback, rule.cb_kwargs, rule.follow)


    #解析response对象,会用callback解析处理他,并返回request或Item对象
    def _parse_response(self, response, callback, cb_kwargs, follow=True):
        #首先判断是否设置了回调函数 (该回调函数可能是rule中的解析函数,也可能是 parse_start_url函数)
        #如果设置了回调函数(parse_start_url()),那么首先用parse_start_url()处理response对象,
        #然后再交给process_results处理。返回cb_res的一个列表
        if callback:
            #如果是parse调用的,则会解析成Request对象
            #如果是rule callback,则会解析成Item
            cb_res = callback(response, **cb_kwargs) or ()
            cb_res = self.process_results(response, cb_res)
            for requests_or_item in iterate_spider_output(cb_res):
                yield requests_or_item

        #如果需要跟进,那么使用定义的Rule规则提取并返回这些Request对象
        if follow and self._follow_links:
            #返回每个Request对象
            for request_or_item in self._requests_to_follow(response):
                yield request_or_item

    def _compile_rules(self):
        def get_method(method):
            if callable(method):
                return method
            elif isinstance(method, basestring):
                return getattr(self, method, None)


        self._rules = [copy.copy(r) for r in self.rules]
        for rule in self._rules:
            rule.callback = get_method(rule.callback)
            rule.process_links = get_method(rule.process_links)
            rule.process_request = get_method(rule.process_request)


    def set_crawler(self, crawler):
        super(CrawlSpider, self).set_crawler(crawler)
        self._follow_links = crawler.settings.getbool('CRAWLSPIDER_FOLLOW_LINKS', True)

CrawlSpider继承于Spider类,除了继承过来的属性外(name、allow_domains),还提供了新的属性和方法:

3 LinkExtractors

class scrapy.linkextractors.LinkExtractor

Link Extractors 的目的很简单: 提取链接。

每个LinkExtractor有唯一的公共方法是 extract_links(),它接收一个 Response 对象,并返回一个 scrapy.link.Link 对象。

Link Extractors要实例化一次,并且 extract_links 方法会根据不同的 response 调用多次提取链接。

class scrapy.linkextractors.LinkExtractor(
    allow = (),
    deny = (),
    allow_domains = (),
    deny_domains = (),
    deny_extensions = None,
    restrict_xpaths = (),
    tags = ('a','area'),
    attrs = ('href'),
    canonicalize = True,
    unique = True,
    process_value = None
)

主要参数:

  • allow:满足括号中“正则表达式”的值会被提取,如果为空,则全部匹配。
  • deny:与这个正则表达式(或正则表达式列表)匹配的URL一定不提取。
  • allow_domains:会被提取的链接的domains。
  • deny_domains:一定不会被提取链接的domains。
  • restrict_xpaths:使用xpath表达式,和allow共同作用过滤链接。

4 rules:适合全站爬取

在rules中包含一个或多个Rule对象,每个Rule对爬取网站的动作定义了特定操作。如果多个rule匹配了相同的链接,则根据规则在本集合中被定义的顺序,第一个会被使用。

class scrapy.spiders.Rule(
        link_extractor, 
        callback = None, 
        cb_kwargs = None, 
        follow = None, 
        process_links = None, 
        process_request = None
)
  • link_extractor:是一个Link Extractor对象,用于定义需要提取的链接。

  • callback: 从link_extractor中每获取到链接时,参数所指定的值作为回调函数,该回调函数接受一个response作为其第一个参数。

    注意:当编写爬虫规则时,避免使用parse作为回调函数。由于CrawlSpider使用parse方法来实现其逻辑,如果覆盖了 parse方法,crawl spider将会运行失败。

  • follow:是一个布尔(boolean)值,指定了根据该规则从response提取的链接是否需要跟进。 如果callback为None,follow 默认设置为True ,否则默认为False。

  • process_links:指定该spider中哪个的函数将会被调用,从link_extractor中获取到链接列表时将会调用该函数。该方法主要用来过滤。

  • process_request:指定该spider中哪个的函数将会被调用, 该规则提取到每个request时都会调用该函数。 (用来过滤request)

5 爬取规则(Crawling rules)

继续用腾讯招聘为例,给出配合rule使用CrawlSpider的例子:

  1. 首先运行

    scrapy shell "http://hr.tencent.com/position.php?&start=0#a"
  2. 导入LinkExtractor,创建LinkExtractor实例对象。:

    from scrapy.linkextractors import LinkExtractor

    page_lx = LinkExtractor(allow=(‘position.php?&start=\d+’))

   > allow : LinkExtractor对象最重要的参数之一,这是一个正则表达式或正则表达式列表,必须要匹配这个正则表达式(或正则表达式列表)的URL才会被提取,如果没有给出(或为空), 它会匹配所有的链接。

   > deny : 用法同allow,只不过与这个正则表达式匹配的URL不会被提取)。它的优先级高于 allow 的参数,如果没有给出(或None), 将不排除任何链接。

3. 调用LinkExtractor实例的extract_links()方法查询匹配结果:
    page_lx.extract_links(response)
  1. 没有查到:

    []
  2. 注意转义字符的问题,继续重新匹配:

    page_lx = LinkExtractor(allow=('position\.php\?&start=\d+'))
    
    # page_lx = LinkExtractor(allow = ('start=\d+'))
    
    page_lx.extract_links(response)
## CrawlSpider 版本

那么,scrapy shell测试完成之后,修改以下代码

​```python
#提取匹配 'http://hr.tencent.com/position.php?&start=\d+'的链接
page_lx = LinkExtractor(allow = ('start=\d+'))

rules = [
    #提取匹配,并使用spider的parse方法进行分析;并跟进链接(没有callback意味着follow默认为True)
    Rule(page_lx, callback = 'parse', follow = True)
] 

这么写对吗?

不对!千万记住 callback 千万不能写 parse,再次强调:由于CrawlSpider使用parse方法来实现其逻辑,因此回调函数必须保证不能与CrawlSpider中parse方法重名 , 如果覆盖了 parse方法,crawl spider将会运行失败。

# -*- coding: utf-8 -*-
import re
import scrapy

from  scrapy.spiders import CrawlSpider, Rule  # 提取超链接的规则
from  scrapy.linkextractors import LinkExtractor  # 提取超链接
from Tencent import items

class MytencentSpider(CrawlSpider):
    name = 'myTencent'
    allowed_domains = ['hr.tencent.com']
    start_urls = ['https://hr.tencent.com/position.php?lid=2218&start=0#a']
    page_lx = LinkExtractor(allow=("start=\d+"))
    rules = [
        Rule(page_lx, callback="parseContent", follow=True)
    ]

    # parse(self, response)
    def parseContent(self, response):
        for data in response.xpath("//tr[@class=\"even\"] | //tr[@class=\"odd\"]"):
            item = items.TencentItem()
            item["jobTitle"] = data.xpath("./td[1]/a/text()")[0].extract()
            item["jobLink"] = "https://hr.tencent.com/" + data.xpath("./td[1]/a/@href")[0].extract()
            item["jobCategories"] = data.xpath("./td[1]/a/text()")[0].extract()
            item["number"] = data.xpath("./td[2]/text()")[0].extract()
            item["location"] = data.xpath("./td[3]/text()")[0].extract()
            item["releasetime"] = data.xpath("./td[4]/text()")[0].extract()

            yield item

            # for i in range(1, 200):
            #     newurl = "https://hr.tencent.com/position.php?lid=2218&start=%d#a" % (i*10)
            #     yield scrapy.Request(newurl, callback=self.parse)

运行:scrapy crawl tencent

6 robots协议

Robots协议(也称为爬虫协议、机器人协议等)的全称是“网络爬虫排除标准”(Robots Exclusion Protocol),网站通过Robots协议告诉搜索引擎哪些页面可以抓取,哪些页面不能抓取。robots.txt文件是一个文本文件。当一个搜索蜘蛛访问一个站点时,它会首先检查该站点根目录下是否存在robots.txt,如果存在,搜索机器人就会按照该文件中的内容来确定访问的范围;如果该文件不存在,所有的搜索蜘蛛将能够访问网站上所有没有被口令保护的页面。

User-agent: * 这里的*代表的所有的搜索引擎种类,*是一个通配符
Disallow: /admin/ 这里定义是禁止爬寻admin目录下面的目录
Disallow: /require/ 这里定义是禁止爬寻require目录下面的目录
Disallow: /ABC/ 这里定义是禁止爬寻ABC目录下面的目录
Disallow: /cgi-bin/*.htm 禁止访问/cgi-bin/目录下的所有以".htm"为后缀的URL(包含子目录)。
Disallow: /*?* 禁止访问网站中所有包含问号 (?) 的网址
Disallow: /.jpg$ 禁止抓取网页所有的.jpg格式的图片
Disallow:/ab/adc.html 禁止爬取ab文件夹下面的adc.html文件。
Allow: /cgi-bin/ 这里定义是允许爬寻cgi-bin目录下面的目录
Allow: /tmp 这里定义是允许爬寻tmp的整个目录
Allow: .htm$ 仅允许访问以".htm"为后缀的URLAllow: .gif$ 允许抓取网页和gif格式图片
Sitemap: 网站地图 告诉爬虫这个页面是网站地图
实例分析:淘宝网的 robots.txt文件

禁止robots协议将 ROBOTSTXT_OBEY = True改为False

7 Logging

Scrapy提供了log功能,可以通过 logging 模块使用。

可以修改配置文件settings.py,任意位置添加下面两行,效果会清爽很多。

LOG_ENABLED = True  # 开启
LOG_FILE = "TencentSpider.log" #日志文件名
LOG_LEVEL = "INFO" #日志级别

Log levels

  • Scrapy提供5层logging级别:
  • CRITICAL - 严重错误(critical)
  • ERROR - 一般错误(regular errors)
  • WARNING - 警告信息(warning messages)
  • INFO - 一般信息(informational messages)
  • DEBUG - 调试信息(debugging messages)

logging设置

通过在setting.py中进行以下设置可以被用来配置logging:

  1. LOG_ENABLED

    默认: True,启用logging

  2. LOG_ENCODING

    默认: ‘utf-8’,logging使用的编码

  3. LOG_FILE

    默认: None,在当前目录里创建logging输出文件的文件名

  4. LOG_LEVEL

    默认: ‘DEBUG’,log的最低级别

  5. LOG_STDOUT

    默认: False 如果为 True,进程所有的标准输出(及错误)将会被重定向到log中。例如,执行 print “hello” ,其将会在Scrapy log中显示。

  6. 日志模块已经被scrapy弃用,改用python自带日志模块

import logging

LOG_FORMAT = "%(asctime)s - %(levelname)s - %(message)s"  # 设置输出格式
DATE_FORMAT = "%Y/%m/%d %H:%M:%S"  # 设置时间格式
logging.basicConfig(filename='tianya.log', filemode='a+', format=LOG_FORMAT, datefmt=DATE_FORMAT)

logging.warning('错误')

setting.py 设置抓取间隔

DOWNLOAD_DELAY = 0.25   #设置下载间隔为250ms
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
2月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
124 6
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
2月前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
2月前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
103 4
|
2月前
|
数据采集 中间件 API
在Scrapy爬虫中应用Crawlera进行反爬虫策略
在Scrapy爬虫中应用Crawlera进行反爬虫策略
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
270 4
|
6月前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
【7月更文挑战第31天】在网络数据的海洋中,使用Python的`requests`库构建网络爬虫就像探索未知的航船。HTTP协议指导爬虫与服务器交流,收集信息。HTTP请求包括请求行、头和体,响应则含状态行、头和体。`requests`简化了发送各种HTTP请求的过程。
105 4
|
5月前
|
数据采集 存储 搜索推荐
打造个性化网页爬虫:从零开始的Python教程
【8月更文挑战第31天】在数字信息的海洋中,网页爬虫是一艘能够自动搜集网络数据的神奇船只。本文将引导你启航,用Python语言建造属于你自己的网页爬虫。我们将一起探索如何从无到有,一步步构建一个能够抓取、解析并存储网页数据的基础爬虫。文章不仅分享代码,更带你理解背后的逻辑,让你能在遇到问题时自行找到解决方案。无论你是编程新手还是有一定基础的开发者,这篇文章都会为你打开一扇通往数据世界的新窗。
|
3月前
|
数据采集 存储 数据挖掘
深入探索 Python 爬虫:高级技术与实战应用
本文介绍了Python爬虫的高级技术,涵盖并发处理、反爬虫策略(如验证码识别与模拟登录)及数据存储与处理方法。通过asyncio库实现异步爬虫,提升效率;利用tesseract和requests库应对反爬措施;借助SQLAlchemy和pandas进行数据存储与分析。实战部分展示了如何爬取电商网站的商品信息及新闻网站的文章内容。提醒读者在实际应用中需遵守法律法规。
220 66
|
2月前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
下一篇
开通oss服务