Java中对List去重, Stream去重

简介: 问题当下互联网技术成熟,越来越多的趋向去中心化、分布式、流计算,使得很多以前在数据库侧做的事情放到了Java端。今天有人问道,如果数据库字段没有索引,那么应该如何根据该字段去重?大家都一致认为用Java来做,但怎么做呢?解答忽然想起以前写过list去重的文章,找出来一看。

问题

当下互联网技术成熟,越来越多的趋向去中心化、分布式、流计算,使得很多以前在数据库侧做的事情放到了Java端。今天有人问道,如果数据库字段没有索引,那么应该如何根据该字段去重?大家都一致认为用Java来做,但怎么做呢?

解答

忽然想起以前写过list去重的文章,找出来一看。做法就是将list中对象的hashcode和equals方法重写,然后丢到HashSet里,然后取出来。这是最初刚学Java的时候像被字典一样背写出来的答案。就比如面试,面过号称做了3年Java的人,问Set和HashMap的区别可以背出来,问如何实现就不知道了。也就是说,初学者只背特性。但真正在项目中使用的时候你需要确保一下是不是真的这样。因为背书没用,只能相信结果。你需要知道HashSet如何帮我做到去重了。换个思路,不用HashSet可以去重吗?最简单,最直接的办法不就是每次都拿着和历史数据比较,都不相同则插入队尾。而HashSet只是加速了这个过程而已。

首先,给出我们要排序的对象User

@Data
@Builder
@AllArgsConstructor
public class User {

  private Integer id;
  private String name;
}


List<User> users = Lists.newArrayList(
        new User(1, "a"),
        new User(1, "b"),
        new User(2, "b"),
        new User(1, "a"));

目标是取出id不重复的user,为了防止扯皮,给个规则,只要任意取出id唯一的数据即可,不用拘泥id相同时算哪个。

用最直观的办法

这个办法就是用一个空list存放遍历后的数据。

@Test
public void dis1() {
    List<User> result = new LinkedList<>();
    for (User user : users) {
      boolean b = result.stream().anyMatch(u -> u.getId().equals(user.getId()));
      if (!b) {
        result.add(user);
      }
    }

    System.out.println(result);
}

用HashSet

背过特性的都知道HashSet可以去重,那么是如何去重的呢? 再深入一点的背过根据hashcode和equals方法。那么如何根据这两个做到的呢?没有看过源码的人是无法继续的,面试也就到此结束了。

事实上,HashSet是由HashMap来实现的(没有看过源码的时候曾经一直直观的以为HashMap的key是HashSet来实现的,恰恰相反)。这里不展开叙述,只要看HashSet的构造方法和add方法就能理解了。

public HashSet() {
    map = new HashMap<>();
}

/**
* 显然,存在则返回false,不存在的返回true
*/
public boolean add(E e) {
    return map.put(e, PRESENT)==null;
}

那么,由此也可以看出HashSet的去重复就是根据HashMap实现的,而HashMap的实现又完全依赖于hashcode和equals方法。这下就彻底打通了,想用HashSet就必须看好自己的这两个方法。

在本题目中,要根据id去重,那么,我们的比较依据就是id了。修改如下:

@Override
public boolean equals(Object o) {
    if (this == o) {
      return true;
    }
    if (o == null || getClass() != o.getClass()) {
      return false;
    }
    User user = (User) o;
    return Objects.equals(id, user.id);
}

@Override
public int hashCode() {
    return Objects.hash(id);
}


//hashcode
result = 31 * result + (element == null ? 0 : element.hashCode());

其中, Objects调用Arrays的hashcode,内容如上述所示。乘以31等于x<<5-x。

最终实现如下:

@Test
public void dis2() {
    Set<User> result = new HashSet<>(users);
    System.out.println(result);
}

使用Java的Stream去重

回到最初的问题,之所以提这个问题是因为想要将数据库侧去重拿到Java端,那么数据量可能比较大,比如10w条。对于大数据,采用Stream相关函数是最简单的了。正好Stream也提供了distinct函数。那么应该怎么用呢?

users.parallelStream().distinct().forEach(System.out::println);

没看到用lambda当作参数,也就是没有提供自定义条件。幸好Javadoc标注了去重标准:

Returns a stream consisting of the distinct elements
(according to {@link Object#equals(Object)}) of this stream.

我们知道,也必须背过这样一个准则:equals返回true的时候,hashcode的返回值必须相同. 这个在背的时候略微有些逻辑混乱,但只要了解了HashMap的实现方式就不会觉得拗口了。HashMap先根据hashcode方法定位,再比较equals方法。

所以,要使用distinct来实现去重,必须重写hashcode和equals方法,除非你使用默认的。

那么,究竟为啥要这么做?点进去看一眼实现。


<P_IN> Node<T> reduce(PipelineHelper<T> helper, Spliterator<P_IN> spliterator) {
    // If the stream is SORTED then it should also be ORDERED so the following will also
    // preserve the sort order
    TerminalOp<T, LinkedHashSet<T>> reduceOp
            = ReduceOps.<T, LinkedHashSet<T>>makeRef(LinkedHashSet::new, LinkedHashSet::add,
                                                     LinkedHashSet::addAll);
    return Nodes.node(reduceOp.evaluateParallel(helper, spliterator));
}

内部是用reduce实现的啊,想到reduce,瞬间想到一种自己实现distinctBykey的方法。我只要用reduce,计算部分就是把Stream的元素拿出来和我自己内置的一个HashMap比较,有则跳过,没有则放进去。其实,思路还是最开始的那个最直白的方法。


@Test
public void dis3() {
    users.parallelStream().filter(distinctByKey(User::getId))
        .forEach(System.out::println);
}


public static <T> Predicate<T> distinctByKey(Function<? super T, ?> keyExtractor) {
    Set<Object> seen = ConcurrentHashMap.newKeySet();
    return t -> seen.add(keyExtractor.apply(t));
}

当然,如果是并行stream,则取出来的不一定是第一个,而是随机的。

上述方法是至今发现最好的,无侵入性的。但如果非要用distinct。只能像HashSet那个方法一样重写hashcode和equals。

小结

会不会用这些东西,你只能去自己练习过,不然到了真正要用的时候很难一下子就拿出来,不然就冒险用。而若真的想大胆使用,了解规则和实现原理也是必须的。比如,LinkedHashSet和HashSet的实现有何不同。

附上贼简单的LinkedHashSet源码:


public class LinkedHashSet<E>
    extends HashSet<E>
    implements Set<E>, Cloneable, java.io.Serializable {

    private static final long serialVersionUID = -2851667679971038690L;

    public LinkedHashSet(int initialCapacity, float loadFactor) {
        super(initialCapacity, loadFactor, true);
    }

    public LinkedHashSet(int initialCapacity) {
        super(initialCapacity, .75f, true);
    }

    public LinkedHashSet() {
        super(16, .75f, true);
    }

    public LinkedHashSet(Collection<? extends E> c) {
        super(Math.max(2*c.size(), 11), .75f, true);
        addAll(c);
    }

    @Override
    public Spliterator<E> spliterator() {
        return Spliterators.spliterator(this, Spliterator.DISTINCT | Spliterator.ORDERED);
    }
}

set的实现

collection and map

    关注我的公众号

唯有不断学习方能改变! -- Ryan Miao
目录
相关文章
|
24天前
|
存储 Java 数据挖掘
Java 8 新特性之 Stream API:函数式编程风格的数据处理范式
Java 8 引入的 Stream API 提供了一种新的数据处理方式,支持函数式编程风格,能够高效、简洁地处理集合数据,实现过滤、映射、聚合等操作。
40 6
|
24天前
|
Java API 开发者
Java中的Lambda表达式与Stream API的协同作用
在本文中,我们将探讨Java 8引入的Lambda表达式和Stream API如何改变我们处理集合和数组的方式。Lambda表达式提供了一种简洁的方法来表达代码块,而Stream API则允许我们对数据流进行高级操作,如过滤、映射和归约。通过结合使用这两种技术,我们可以以声明式的方式编写更简洁、更易于理解和维护的代码。本文将介绍Lambda表达式和Stream API的基本概念,并通过示例展示它们在实际项目中的应用。
|
15天前
|
Rust 安全 Java
Java Stream 使用指南
本文介绍了Java中Stream流的使用方法,包括如何创建Stream流、中间操作(如map、filter、sorted等)和终结操作(如collect、forEach等)。此外,还讲解了并行流的概念及其可能带来的线程安全问题,并给出了示例代码。
|
26天前
|
安全 Java API
Java中的Lambda表达式与Stream API的高效结合####
探索Java编程中Lambda表达式与Stream API如何携手并进,提升数据处理效率,实现代码简洁性与功能性的双重飞跃。 ####
26 0
|
1月前
|
Java API 数据处理
探索Java中的Lambda表达式与Stream API
【10月更文挑战第22天】 在Java编程中,Lambda表达式和Stream API是两个强大的功能,它们极大地简化了代码的编写和提高了开发效率。本文将深入探讨这两个概念的基本用法、优势以及在实际项目中的应用案例,帮助读者更好地理解和运用这些现代Java特性。
|
2月前
|
Java 流计算
Flink-03 Flink Java 3分钟上手 Stream 给 Flink-02 DataStreamSource Socket写一个测试的工具!
Flink-03 Flink Java 3分钟上手 Stream 给 Flink-02 DataStreamSource Socket写一个测试的工具!
46 1
Flink-03 Flink Java 3分钟上手 Stream 给 Flink-02 DataStreamSource Socket写一个测试的工具!
|
2月前
|
Java Shell 流计算
Flink-02 Flink Java 3分钟上手 Stream SingleOutputStreamOpe ExecutionEnvironment DataSet FlatMapFunction
Flink-02 Flink Java 3分钟上手 Stream SingleOutputStreamOpe ExecutionEnvironment DataSet FlatMapFunction
26 1
Flink-02 Flink Java 3分钟上手 Stream SingleOutputStreamOpe ExecutionEnvironment DataSet FlatMapFunction
|
2月前
|
安全 Java 程序员
深入Java集合框架:解密List的Fail-Fast与Fail-Safe机制
本文介绍了 Java 中 List 的遍历和删除操作,重点讨论了快速失败(fail-fast)和安全失败(fail-safe)机制。通过普通 for 循环、迭代器和 foreach 循环的对比,详细解释了各种方法的优缺点及适用场景,特别是在多线程环境下的表现。最后推荐了适合高并发场景的 fail-safe 容器,如 CopyOnWriteArrayList 和 ConcurrentHashMap。
68 5
|
2月前
|
Java 程序员 编译器
Java|如何正确地在遍历 List 时删除元素
从源码分析如何正确地在遍历 List 时删除元素。为什么有的写法会导致异常,而另一些不会。
41 3
|
2月前
|
Java 程序员
Java|List.subList 踩坑小记
不应该仅凭印象和猜测,就开始使用一个方法,至少花一分钟认真读完它的官方注释文档。
29 1