Hive之sql查询语句的处理步骤

简介: Hive之sql查询语句的处理步骤

sql查询语句的处理步骤如下

--查询组合字段
(5)select (5-2) distinct(5-3) top(<top_specification>)(5-1)<select_list>
--连表
(1)from (1-J)<left_table><join_type> join <right_table> on <on_predicate>
        (1-A)<left_table><apply_type> apply <right_table_expression> as <alias>
        (1-P)<left_table> pivot (<pivot_specification>) as <alias>
        (1-U)<left_table> unpivot (<unpivot_specification>) as <alias>
--查询条件
(2)where <where_pridicate>
--分组
(3)group by <group_by_specification>
--分组条件
(4)having<having_predicate>
--排序
(6)order by<order_by_list>
AI 代码解读

说明:
1、顺序为有1-6,6个大步骤,然后细分,5-1,5-2,5-3,由小变大顺序,1-J,1-A,1-P,1-U,为并行次序。如果不够明白,接下来我在来个流程图看看。

2、执行过程中也会相应的产生多个虚拟表(下面会有提到),以配合最终的正确查询。

sql查询语句处理步骤流程图
221335571249071

准备实例,创建表,插入数据,写要分析的实例查询语句
1.首先创建两个表
221356460622813_1_
2.创建两个表,并插入表数据,脚本略
3.编写咱们要解析的查询语句,即本篇要查询的实例语句。

select top(4)  status , max(m.id) as maxMemberID
from [dbo].[Member] as m right outer join [dbo].[Order] as o 
on m.id=o.member_id 
where m.id>0
group by status 
having status>=0
order by maxMemberID asc
AI 代码解读

实例语句分步骤分析
1.从from开始

1.1 加载左表

from [dbo].[Member] as m
AI 代码解读

查询结果:member表中的所有数据

1.2 这里应该是 right outer join ,但是这里在sql中被定义分解为2个步骤,即join ,right outer join 。表达式关键字从左到右,依次执行

join [dbo].[Order] as o
AI 代码解读

查询结果:存入虚拟表vt1,为两个表的笛卡尔集合。这里你或许不明白什么叫笛卡尔集合,我打个比方给说说,还望不要嫌弃,就是小朋友握手问题,A班里有3个学生(看作一个表的三条数据),B班里有2个学生(看作另外一个表的2条数据).B班小朋友跟A班小朋友搞联欢晚会,首先要每个人都要确保跟另外一个班的同学我一下手,那么交叉出来的集合就是(2*3=6)有6条不同的轨迹。这个轨迹的集合就是笛卡尔集合。如果你还不明白,我再说下,就是m(5条数据)表中的第一条数据跟o(7条数据)表中的所有数据握下手,有7条,然后依次类推共有35条不同的数据。这里的null值也是要加进来的。

1.3、on 筛选器

on m.id=o.member_id 
AI 代码解读

查询结果如下:
221448435309309
从上一步的笛卡尔集中的35条数据中删除掉不匹配的行,得到5条数据,存入虚拟表Vt2。

1.4 、添加外部行(outer row)

right outer join [dbo].[Order] as o 
AI 代码解读

查询结果如下:
221455019689926
右表(order)作为保留表,把剩余的数据重新添加到上一步的虚拟表vt2中,生成虚拟表vt3。

  1. where 阶段
where m.id>0
AI 代码解读

查询结果:存入虚拟表vt4,为筛选的条件为true的结果集,这里加入一个记忆点,就是,where的筛选删除为永久的,而on的筛选删除为暂时的,因为on筛选过后,有可能会经过outer添加外部行,重新把数据加载回来,而where则不能。
3.group by分组

group by status
AI 代码解读

查询结果:存入vt5,以status列的数值开始分组,即status列,值一样的分为一组,这里的两个null在三值逻辑中被视为true。三值逻辑:true,false,null。此三值,null为未知,是数据的逻辑特色,有的地方两个null相等为ture,在有些地方则为false。这个你百度下看看有很多讲解。
4.having 筛选

having status>=0
AI 代码解读

查询结果:筛选分好组的组数据,把不满足条件的删除掉
5.select 查询挑拣计算列

5.1、计算表达式

select status , max(m.id)
AI 代码解读

5.2、distinct过滤重复
5.3、top 结合order by 筛选 多少行,但这里的数据没有排序只是把多少行数据列出来而已。

6.order by

排序显示

至此,一个完整的sql查询执行完毕。
希望能对大家有所帮助

目录
打赏
0
0
0
0
12
分享
相关文章
SQL查询太慢?实战讲解YashanDB SQL调优思路
本文是Meetup第十期“调优实战专场”的第二篇技术文章,上一篇《高效查询秘诀,解码YashanDB优化器分组查询优化手段》中,我们揭秘了YashanDB分组查询优化秘诀,本文将通过一个案例,助你快速上手YashanDB慢日志功能,精准定位“慢SQL”后进行优化。
【YashanDB知识库】字段加上索引后,SQL查询不到结果
【YashanDB知识库】字段加上索引后,SQL查询不到结果
OmniSQL:开源文本到SQL神器!自然语言秒转查询到复杂多表连接等SQL需求
OmniSQL是开源的文本到SQL转换模型,通过创新的数据合成框架生成250万条高质量样本,支持7B/14B/32B三种模型版本,能处理从简单查询到复杂多表连接等各种SQL需求。
62 16
OmniSQL:开源文本到SQL神器!自然语言秒转查询到复杂多表连接等SQL需求
如何优化SQL查询以提高数据库性能?
这篇文章以生动的比喻介绍了优化SQL查询的重要性及方法。它首先将未优化的SQL查询比作在自助餐厅贪多嚼不烂的行为,强调了只获取必要数据的必要性。接着,文章详细讲解了四种优化策略:**精简选择**(避免使用`SELECT *`)、**专业筛选**(利用`WHERE`缩小范围)、**高效联接**(索引和限制数据量)以及**使用索引**(加速搜索)。此外,还探讨了如何避免N+1查询问题、使用分页限制结果、理解执行计划以及定期维护数据库健康。通过这些技巧,可以显著提升数据库性能,让查询更高效流畅。
玩转大数据:从零开始掌握SQL查询基础
玩转大数据:从零开始掌握SQL查询基础
113 35
利用 PolarDB PG 版向量化引擎,加速复杂 SQL 查询!完成任务领发财新年抱枕!
利用 PolarDB PG 版向量化引擎,加速复杂 SQL 查询!完成任务领发财新年抱枕!
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
53 1
SQL为什么不建议执行多表关联查询
本文探讨了SQL中不建议执行多表关联查询的原因,特别是MySQL与PG在多表关联上的区别。MySQL仅支持嵌套循环连接,而不支持排序-合并连接和散列连接,因此在多表(超过3张)关联查询时效率较低。文章还分析了多表关联查询与多次单表查询的效率对比,指出将关联操作放在Service层处理的优势,包括减少数据库计算资源消耗、提高缓存效率、降低锁竞争以及更易于分布式扩展等。最后,通过实例展示了如何分解关联查询以优化性能。
SQL做数据分析的困境,查询语言无法回答的真相
SQL 在简单数据分析任务中表现良好,但面对复杂需求时显得力不从心。例如,统计新用户第二天的留存率或连续活跃用户的计算,SQL 需要嵌套子查询和复杂关联,代码冗长难懂。Python 虽更灵活,但仍需变通思路,复杂度较高。相比之下,SPL(Structured Process Language)语法简洁、支持有序计算和分组子集保留,具备强大的交互性和调试功能,适合处理复杂的深度数据分析任务。SPL 已开源免费,是数据分析师的更好选择。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等