K-Means聚类算法原理

简介:

K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法。包括初始化优化K-Means++, 距离计算优化elkan K-Means算法和大数据情况下的优化Mini Batch K-Means算法。
1. K-Means原理初探
K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。
如果用数据表达式表示,假设簇划分为$(C_1,C_2,...C_k)$,则我们的目标是最小化平方误差E:

$$ E = \sum\limits_{i=1}^k\sum\limits_{x \in C_i} ||x-\mu_i||_2^2 $$

其中$μ_i$是簇$C_i$的均值向量,有时也称为质心,表达式为:

$$ \mu_i = \frac{1}{|C_i|}\sum\limits_{x \in C_i}x $$

如果我们想直接求上式的最小值并不容易,这是一个NP难的问题,因此只能采用启发式的迭代方法。
K-Means采用的启发式方式很简单,用下面一组图就可以形象的描述。

image


上图a表达了初始的数据集,假设k=2。在图b中,我们随机选择了两个k类所对应的类别质心,即图中的红色质心和蓝色质心,然后分别求样本中所有点到这两个质心的距离,并标记每个样本的类别为和该样本距离最小的质心的类别,如图c所示,经过计算样本和红色质心和蓝色质心的距离,我们得到了所有样本点的第一轮迭代后的类别。此时我们对我们当前标记为红色和蓝色的点分别求其新的质心,如图4所示,新的红色质心和蓝色质心的位置已经发生了变动。图e和图f重复了我们在图c和图d的过程,即将所有点的类别标记为距离最近的质心的类别并求新的质心。最终我们得到的两个类别如图f。
当然在实际K-Mean算法中,我们一般会多次运行图c和图d,才能达到最终的比较优的类别。
2. 传统K-Means算法流程
在上一节我们对K-Means的原理做了初步的探讨,这里我们对K-Means的算法做一个总结。
首先我们看看K-Means算法的一些要点。
1)对于K-Means算法,首先要注意的是k值的选择,一般来说,我们会根据对数据的先验经验选择一个合适的k值,如果没有什么先验知识,则可以通过交叉验证选择一个合适的k值。
2)在确定了k的个数后,我们需要选择k个初始化的质心,就像上图b中的随机质心。由于我们是启发式方法,k个初始化的质心的位置选择对最后的聚类结果和运行时间都有很大的影响,因此需要选择合适的k个质心,最好这些质心不能太近。
好了,现在我们来总结下传统的K-Means算法流程。 
输入是样本集$D=\{x_1,x_2,...x_m\}$,聚类的簇树k,最大迭代次数N
输出是簇划分$C=\{C_1,C_2,...C_k\}$
1) 从数据集D中随机选择k个样本作为初始的k个质心向量:$\{\mu_1,\mu_2,...,\mu_k\}$
2)对于n=1,2,...,N
a) 将簇划分C初始化为$C_t = \varnothing \;\; t =1,2...k$
b) 对于i=1,2...m,计算样本$x_i$和各个质心向量$\mu_j(j=1,2,...k)$的距离:$d_{ij} = ||x_i - \mu_j||_2^2$,将$x_i$标记最小的为$d_{ij}$所对应的类别$λ_i$。此时更新$C_{\lambda_i} = C_{\lambda_i} \cup \{x_i\}$
c) 对于j=1,2,...,k,对$C_j$中所有的样本点重新计算新的质心$\mu_j = \frac{1}{|C_j|}\sum\limits_{x \in C_j}x$
e) 如果所有的k个质心向量都没有发生变化,则转到步骤3)
3) 输出簇划分$C=\{C_1,C_2,...C_k\}$
3. K-Means初始化优化K-Means++
在上节我们提到,k个初始化的质心的位置选择对最后的聚类结果和运行时间都有很大的影响,因此需要选择合适的k个质心。如果仅仅是完全随机的选择,有可能导致算法收敛很慢。K-Means++算法就是对K-Means随机初始化质心的方法的优化。
K-Means++的对于初始化质心的优化策略也很简单,如下:
a) 从输入的数据点集合中随机选择一个点作为第一个聚类中心$μ_1$
b) 对于数据集中的每一个点$x_i$,计算它与已选择的聚类中心中最近聚类中心的距离$D(x_i) = arg\;min||x_i- \mu_r||_2^2\;\;r=1,2,...k_{selected}$
c) 选择一个新的数据点作为新的聚类中心,选择的原则是:$D(x)$较大的点,被选取作为聚类中心的概率较大
d) 重复b和c直到选择出k个聚类质心
e) 利用这k个质心来作为初始化质心去运行标准的K-Means算法
4. K-Means距离计算优化elkan K-Means
在传统的K-Means算法中,我们在每轮迭代时,要计算所有的样本点到所有的质心的距离,这样会比较的耗时。那么,对于距离的计算有没有能够简化的地方呢?elkan K-Means算法就是从这块入手加以改进。它的目标是减少不必要的距离的计算。那么哪些距离不需要计算呢?
elkan K-Means利用了两边之和大于等于第三边,以及两边之差小于第三边的三角形性质,来减少距离的计算。
第一种规律是对于一个样本点$x$和两个质心$\mu_{j_1}, \mu_{j_2}$。如果我们预先计算出了这两个质心之间的距离$D(j_1,j_2)$,则如果计算发现$2D(x,j_1) \leq D(j_1,j_2)$,我们立即就可以知道$D(x,j_1) \leq D(x, j_2)$。此时我们不需要再计算$D(x, j_2)$,也就是说省了一步距离计算。
第二种规律是对于一个样本点xx和两个质心$\mu_{j_1}, \mu_{j_2}$。我们可以得到$D(x,j_2) \geq max\{0, D(x,j_1) - D(j_1,j_2)\}$。这个从三角形的性质也很容易得到。
利用上边的两个规律,elkan K-Means比起传统的K-Means迭代速度有很大的提高。但是如果我们的样本的特征是稀疏的,有缺失值的话,这个方法就不使用了,此时某些距离无法计算,则不能使用该算法。
5. K-Means与KNN
初学者很容易把K-Means和KNN搞混,两者其实差别还是很大的。
K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的k个点,用这最近的k个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到k个类别的最佳质心,从而决定样本的簇类别。
当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。两者都利用了最近邻(nearest neighbors)的思想。

摘自:https://www.cnblogs.com/pinard/p/6164214.html

目录
相关文章
|
1月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
102 4
|
3天前
|
算法 Java 数据库
理解CAS算法原理
CAS(Compare and Swap,比较并交换)是一种无锁算法,用于实现多线程环境下的原子操作。它通过比较内存中的值与预期值是否相同来决定是否进行更新。JDK 5引入了基于CAS的乐观锁机制,替代了传统的synchronized独占锁,提升了并发性能。然而,CAS存在ABA问题、循环时间长开销大和只能保证单个共享变量原子性等缺点。为解决这些问题,可以使用版本号机制、合并多个变量或引入pause指令优化CPU执行效率。CAS广泛应用于JDK的原子类中,如AtomicInteger.incrementAndGet(),利用底层Unsafe库实现高效的无锁自增操作。
理解CAS算法原理
|
24天前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
46 3
|
29天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
1月前
|
存储 算法 网络协议
OSPF的SPF算法介绍:原理、实现与应用
OSPF的SPF算法介绍:原理、实现与应用
84 3
|
29天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
3天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
110 80
|
21小时前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
22天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
8天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。

热门文章

最新文章