吴恩达《机器学习》课程总结(19)总结

简介: (1)涉及到的算法1.监督学习:线性回归,逻辑回归,神经网络,SVM。线性回归(下面第三行x0(i)其实是1,可以去掉)逻辑回归神经网络(写出前向传播即可,反向框架会自动计算)SVM2.非监督学习:聚类算法(K-mean),降维(PCA)K-meanPCA3.异常检测4.推荐系统(2)策略1.偏差与方差,正则化训练误差减去人类最高水平为偏差(欠拟合),交叉验证集误差减训练误差为方差(过拟合);正则化解决方差问题,不对θ0正则化;2.学习曲线全过程观测偏差与方差,所以更全面。

(1)涉及到的算法

1.监督学习:线性回归,逻辑回归,神经网络,SVM。

线性回归(下面第三行x0(i)其实是1,可以去掉)

逻辑回归

神经网络(写出前向传播即可,反向框架会自动计算)

SVM

2.非监督学习:聚类算法(K-mean),降维(PCA)

K-mean

PCA

3.异常检测

4.推荐系统

(2)策略

1.偏差与方差,正则化

训练误差减去人类最高水平为偏差(欠拟合),交叉验证集误差减训练误差为方差(过拟合);

正则化解决方差问题,不对θ0正则化;

2.学习曲线

全过程观测偏差与方差,所以更全面。

3.误差分析

找到哪种原因造成误差最大,最该花时间的地方。

4.评价方法

尽量使用单一指标评价,准确率不适合类偏斜,用精确度和召回率判定

精确度是预测的视角(预测为正样本中有多少是正样本),召回率是样本视角(正样本有多少被预测到了)

F1=2(PR)/(P+R)

5.数据集的拆分

训练集用于训练模型,,交叉验证集用于筛选模型/调参,测试集用来做最终评价。

6.上限分析

每一步假设输出完全正确时,能提高多少的正确率,提高最高的地方就是最该马上花时间解决的地方。

(3)应用

1.OCR

检测,分割,识别,现在常常不分割了,直接序列化识别。

2.大规模的机器学习

小批量的训练方法以及使用并行计算。

相关文章
|
26天前
|
机器学习/深度学习 算法 Python
【绝技揭秘】Andrew Ng 机器学习课程第十周:解锁梯度下降的神秘力量,带你飞速征服数据山峰!
【8月更文挑战第16天】Andrew Ng 的机器学习课程是学习该领域的经典资源。第十周聚焦于优化梯度下降算法以提升效率。课程涵盖不同类型的梯度下降(批量、随机及小批量)及其应用场景,介绍如何选择合适的批量大小和学习率调整策略。还介绍了动量法、RMSProp 和 Adam 优化器等高级技巧,这些方法能有效加速收敛并改善模型性能。通过实践案例展示如何使用 Python 和 NumPy 实现小批量梯度下降。
27 1
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 吴恩达:机器学习的六个核心算法!
吴恩达教授在《The Batch》周报中介绍了机器学习领域的六个基础算法:线性回归、逻辑回归、梯度下降、神经网络、决策树和k均值聚类。这些算法是现代AI的基石,涵盖了从简单的统计建模到复杂的深度学习。线性回归用于连续变量预测,逻辑回归用于二分类,梯度下降用于优化模型参数,神经网络处理非线性关系,决策树提供直观的分类规则,而k均值聚类则用于无监督学习中的数据分组。这些算法各有优缺点,广泛应用于经济学、金融、医学、市场营销等多个领域。通过不断学习和实践,我们可以更好地掌握这些工具,发掘智能的乐趣。
86 1
算法金 | 吴恩达:机器学习的六个核心算法!
|
4月前
|
机器学习/深度学习 监控 算法
LabVIEW使用机器学习分类模型探索基于技能课程的学习
LabVIEW使用机器学习分类模型探索基于技能课程的学习
40 1
|
4月前
|
机器学习/深度学习 人工智能 算法
机器学习的魔法(一)从零开始理解吴恩达的精炼笔记
机器学习的魔法(一)从零开始理解吴恩达的精炼笔记
|
4月前
|
机器学习/深度学习
Coursera 吴恩达Machine Learning(机器学习)课程 |第五周测验答案(仅供参考)
Coursera 吴恩达Machine Learning(机器学习)课程 |第五周测验答案(仅供参考)
|
4月前
|
机器学习/深度学习 人工智能
【人工智能】<吴恩达-机器学习>多变量线性回归&学习率&特征值
【1月更文挑战第26天】【人工智能】<吴恩达-机器学习>多变量线性回归&学习率&特征值
|
14天前
|
机器学习/深度学习 算法 数据挖掘
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
|
6天前
|
机器学习/深度学习 数据采集 算法
数据挖掘和机器学习算法
数据挖掘和机器学习算法
|
9天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
80 1
|
14天前
|
机器学习/深度学习 算法 数据挖掘
机器学习必知必会10大算法
机器学习必知必会10大算法