吴恩达《深度学习》第一门课(1)深度学习引言

简介: 1.1欢迎主要讲了五门课的内容:第一门课:神经网络基础,构建网络等;第二门课:神经网络的训练技巧;第三门课:构建机器学习系统的一些策略,下一步该怎么走(吴恩达老师新书《Machine Learning Yearning》就是针对这个以及上一课);第四门课:卷积神经网络相关;第五门课:循环神经网络相关。

1.1欢迎

主要讲了五门课的内容:

第一门课:神经网络基础,构建网络等;

第二门课:神经网络的训练技巧;

第三门课:构建机器学习系统的一些策略,下一步该怎么走(吴恩达老师新书《Machine Learning Yearning》就是针对这个以及上一课);

第四门课:卷积神经网络相关;

第五门课:循环神经网络相关。

1.2什么是神经网络

(1)常说的深度学习指的就是训练神经网络,或者也指特别大规模的神经网络。

(2)每一个神经元都代表着从输入到输出的函数映射,如下的房价预测:

(3)激活函数Relu(Rectified Linear Unit)其实就是max(0,x)。

(4)神经网络非常擅长计算从x到y的精确映射函数(个人理解:神经网络实质就是非线性的多项式拟合),神经网络的输入单元个数一般是特征个数,中间称为隐藏层,然后输出单元个数依据实际情况而定,如下输出是房价的预测值,故是一个神经元。

1.3神经网络的监督学习

(1)神经网络在监督学习上的应用:

(2)数据包括结构化数据和非结构化数据,图像语言语音都是非结构化数据,是神经网络要研究解决的重点。

1.4为什么深度学习会兴起

(1)三点原因:数据规模大、计算速度提高、算法的创新。事实上如今提高性能最可靠的方法就是运用更大的神经网络和投入更多的数据。下图展示了数据量、模型大小与性能之间的关系:

(2)算法创新的一个小案例:激活函数从sigmoid(存在梯度消失)变成ReLU,训练的速度变得更快了。

(3)在实践应该按照下图方式进行快速迭代:

1.5关于这么课

总共四周,分别是前言,预备知识,浅层神经网络和深层神经网络。

1.6课程资源

相关文章
|
机器学习/深度学习 自然语言处理 算法
深度学习工程师-吴恩达课程汇总
深度学习工程师-吴恩达课程汇总
217 0
|
机器学习/深度学习 人工智能 自然语言处理
第一周:深度学习引言(Introduction to Deep Learning)
在cousera的这一系列也叫做专项课程中,在第一门课中(神经网络和深度学习),你将学习神经网络的基础,你将学习神经网络和深度学习,这门课将持续四周,专项课程中的每门课将持续2至4周。
98 0
|
机器学习/深度学习 人工智能 自然语言处理
全球名校AI课程库(1)| 吴恩达·深度学习专项课程『Deep Learning Specialization』
深度学习入门首选!课程可以帮助学习者掌握知识和技能,并邀请工业界与学术界的深度学习专家为大家提供职业发展建议,提供一条迈向 AI 世界的清晰途径。
2403 1
全球名校AI课程库(1)| 吴恩达·深度学习专项课程『Deep Learning Specialization』
|
机器学习/深度学习 存储 关系型数据库
【吴恩达课后编程作业】第三周作业 (附答案、代码)隐藏层神经网络 神经网络、深度学习、机器学习
【吴恩达课后编程作业】第三周作业 (附答案、代码)隐藏层神经网络 神经网络、深度学习、机器学习
438 0
【吴恩达课后编程作业】第三周作业 (附答案、代码)隐藏层神经网络 神经网络、深度学习、机器学习
|
机器学习/深度学习 存储 移动开发
【吴恩达课后编程作业】第二周作业 (附答案、代码) Logistic回归 神经网络、深度学习、机器学习
【吴恩达课后编程作业】第二周作业 (附答案、代码) Logistic回归 神经网络、深度学习、机器学习
385 0
【吴恩达课后编程作业】第二周作业 (附答案、代码) Logistic回归 神经网络、深度学习、机器学习
|
机器学习/深度学习 存储
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.4)
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.4)
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.4)
|
机器学习/深度学习 算法 网络架构
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.3)
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.3)
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.3)
|
机器学习/深度学习 算法
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.2)
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.2)
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.2)
|
机器学习/深度学习 算法 测试技术
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.1)
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.1)
【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.1)
|
机器学习/深度学习 算法 数据可视化
深度学习与CV教程(1) | 引言与知识基础
本文讲解了斯坦福大学 CS231n 课程的内容框架(深度学习 + 卷积神经网络 + 计算机视觉应用)和学习基础,帮助了解计算机视觉的历史和技术发展【对应 CS231n Lecture 1】
1244 1
深度学习与CV教程(1) | 引言与知识基础

热门文章

最新文章

下一篇
无影云桌面