微博python爬虫,每日百万级数据

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
日志服务 SLS,月写入数据量 50GB 1个月
简介: 新浪微博作为一个巨大的、实时的语料库,对微博数据爬取和分析,有重大的意义,本文就将讲述如何抓取微博数据。

新浪微博绝对是一个巨大的,实时的语料库!对微博数据爬取和分析,有重大的意义。

比如,现在要调查工商银行的服务态度,就可以抓取微博内容中包含工商银行的微博语料,然后做情感分析,就可以得到用户对银行服务的满意程度。

再比如,最近火热的明星鹿晗,可以抓取鹿晗的粉丝信息,分析这些粉丝处于什么年龄段,有什么标签,爱好,性别分布等等。这种对人群的分析,还可以同理应用到商业品牌上,用用户市场调研。

当然例子还有很多,那么,首先,要有微博数据!

所以,就产生了众多的微博爬虫项目。后来,新浪微博也开放了微博的API接口,但是官方的东西,限制还是很多的。

准备工作

User-Agent池

爬微博,这种大项目,必要充分的伪装是必须的,所以需要一个User-Agent池,每次,随机选择一个User-Agent。

我整理的在这里:User-Agent池

充足的微博账号

微博爬虫,必须登录以后,才能抓取。而一直使用一个账号,是很容易被封号的!

所以,需要多准备几个账号,每次随机选择一个账号登录,进行抓取。(实际是随机选择一个cookie)。

至于买微博账号的地方,某宝就有:

充足的IP代理

如果你想很快的进行抓取,延迟为0的话,IP很快就会被封,返回403 Forbidden。这时候就需要换代理,所以需要有一个IP代理池。

当然,经测试,每次访问延迟为0.5s,并发量为32,这个参数是不会被封的!

一个服务器
其实,如果IP代理,是免费抓取来的,通常质量并不好,通过代理访问延迟会很大!所以,不如不用代理,加一个0.5秒的延迟,慢慢爬。

这时候,就需要一个勤劳的爬虫,24小时不间断的爬数据!

所以当然是需要部署在服务器上!

爬虫策略
登录微博
登录一直是一个很复杂的问题,不过,我们可以通过selenium来简化这个问题。
直接通过selenium编写浏览器的脚本,自动打开微博的手机站,点击登录,在输入框中填充账号,密码,再点击登录。最后返回cookie即可。

image

获取cookie以后,可以保存到数据库中。以后每次request请求,随机从数据库中选一个cookie加上,就免登录了。

抓取方案

首先选择一个(或多个)种子用户,作为最初抓取的对象。
对于每个抓取对象,依次抓取个人信息,所有的微博,还有粉丝列表和关注列表。
将对象的粉丝列表和关注列表中的用户,再加入到抓取对象中去。以此循环。
这样就可以形成以种子用户为核心,逐层向外扩散的爬虫辐射。

理论上,只要一小批种子用户启动,就可以爬取全网的微博!

大V的过滤

事实上,有很多微博的信息是没有营养的,比如一些恶俗的营销号,或者一些明星的微博账号。所以,我们可以给抓取的对象,加一个比较正常的阈值,也就是一个普通用户的情况:微博数量<5000,粉丝<5000,关注<5000.

Scrapy配置

MiddleWare:随机User-Agent和随机Cookie
Mongodb:网络爬虫,数据项进场会出现不全,格式不统一的状况,所以采用Mongodb较为合适
DOWNLOAD_DELAY = 0.5 下载间隔时间设置为0.5
CONCURRENT_REQUESTS = 32 并发下载量为32
LOG_FILE = weibo.log 采用日志文件记录日志

运行环境为:Python3

需要依赖包括:pymogo,scrapy

部署服务器,Run!
服务器安装Mongodb,并开放外网访问权限

这样配置以后,在本地Pycharm中,配置远端数据库,就实现可视化操作与管理。

运行爬虫

克隆代码到服务器中,安装依赖,并执行

nohup python run.py

就已经开始不停的爬取微博了!

通过命令:tail -10 weibo.log 查看最新的日志。

image

在日志中,查看爬取速度:

image

可以看到一分钟,可以抓取848个item(数据项),这样一天下来:

8486024=1221120 可以抓取120万的微博数据!!

而且是在服务器上运行,可以源源不断的抓取!

同时在本地,通过Mongodb可视化工具,连接并查看数据库。

image

image

通过简单的count统计,抓取数量:

image

可以看到至此已经抓取1.8k用户信息,2.7w微博语料,8.2w分析关系信息。

原文发布时间为:2018-07-08
本文来自云栖社区合作伙伴“大数据挖掘DT机器学习”,了解相关信息可以关注“大数据挖掘DT机器学习

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。 &nbsp; 相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
Python爬虫实战:一键采集电商数据,掌握市场动态!
这个爬虫还挺实用,不光能爬电商数据,改改解析规则,啥数据都能爬。写爬虫最重要的是要有耐心,遇到问题别着急,慢慢调试就成。代码写好了,运行起来那叫一个爽,分分钟几千条数据到手。
Java爬虫获取微店快递费用item_fee API接口数据实现
本文介绍如何使用Java开发爬虫程序,通过微店API接口获取商品快递费用(item_fee)数据。主要内容包括:微店API接口的使用方法、Java爬虫技术背景、需求分析和技术选型。具体实现步骤为:发送HTTP请求获取数据、解析JSON格式的响应并提取快递费用信息,最后将结果存储到本地文件中。文中还提供了完整的代码示例,并提醒开发者注意授权令牌、接口频率限制及数据合法性等问题。
使用代理IP爬虫时数据不完整的原因探讨
在信息化时代,互联网成为生活的重要部分。使用HTTP代理爬取数据时,可能会遇到失败情况,如代理IP失效、速度慢、目标网站策略、请求频率过高、地理位置不当、网络连接问题、代理配置错误和目标网站内容变化等。解决方法包括更换代理IP、调整请求频率、检查配置及目标网站变化。
88 11
如何通过PHP爬虫模拟表单提交,抓取隐藏数据
本文介绍了如何使用PHP模拟表单提交并结合代理IP技术抓取京东商品的实时名称和价格,特别是在电商大促期间的数据采集需求。通过cURL发送POST请求,设置User-Agent和Cookie,使用代理IP绕过限制,解析返回数据,展示了完整代码示例。
如何通过PHP爬虫模拟表单提交,抓取隐藏数据
探索CSDN博客数据:使用Python爬虫技术
本文介绍了如何利用Python的requests和pyquery库爬取CSDN博客数据,包括环境准备、代码解析及注意事项,适合初学者学习。
188 0
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
212 6
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
181 4

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等