python数据抓取分析(python + mongodb)

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: 分享点干货!!! Python数据抓取分析 编程模块:requests,lxml,pymongo,time,BeautifulSoup 首先获取所有产品的分类网址: 1 def step(): 2 try: 3 headers = { 4 。

分享点干货!!!

Python数据抓取分析

编程模块:requests,lxml,pymongo,time,BeautifulSoup

首先获取所有产品的分类网址:

 1 def step():
 2     try:
 3         headers = {
 4            。。。。。
 5             }
 6         r = requests.get(url,headers,timeout=30)
 7         html = r.content
 8         soup = BeautifulSoup(html,"lxml")
 9         url = soup.find_all(正则表达式)
10         for i in url:
11             url2 =  i.find_all('a')
12             for j in url2:
13                  step1url =url + j['href']
14                  print step1url
15                  step2(step1url)
16     except Exception,e:
17         print e

 

我们在产品分类的同时需要确定我们所访问的地址是产品还是又一个分类的产品地址(所以需要判断我们访问的地址是否含有if判断标志):

 1 def step2(step1url):
 2     try:
 3         headers = {
 4            。。。。
 5             }
 6         r = requests.get(step1url,headers,timeout=30)
 7         html = r.content
 8         soup = BeautifulSoup(html,"lxml")
 9         a = soup.find('div',id='divTbl')
10         if a:
11             url = soup.find_all('td',class_='S-ITabs')
12             for i in url:
13                 classifyurl =  i.find_all('a')
14                 for j in classifyurl:
15                      step2url = url + j['href']
16                      #print step2url
17                      step3(step2url)
18         else:
19             postdata(step1url)

当我们if判断后为真则将第二页的分类网址获取到(第一个步骤),否则执行postdata函数,将网页产品地址抓取!

 1 def producturl(url):
 2     try:
 3         p1url = doc.xpath(正则表达式)
 4         for i in xrange(1,len(p1url) + 1):
 5             p2url = doc.xpath(正则表达式)
 6             if len(p2url) > 0:
 7                 producturl = url + p2url[0].get('href')
 8                 count = db[table].find({'url':producturl}).count()
 9                 if count <= 0:
10                         sn = getNewsn()
11                         db[table].insert({"sn":sn,"url":producturl})
12                         print str(sn) + 'inserted successfully'
13                 else:
14                         'url exist'
15 
16     except Exception,e:
17         print e

其中为我们所获取到的产品地址并存入mongodb中,sn作为地址的新id。

下面我们需要在mongodb中通过新id索引来获取我们的网址并进行访问,对产品进行数据分析并抓取,将数据更新进数据库内!

其中用到最多的BeautifulSoup这个模块,但是对于存在于js的价值数据使用BeautifulSoup就用起来很吃力,所以对于js中的数据我推荐使用xpath,但是解析网页就需要用到HTML.document_fromstring(url)方法来解析网页。

对于xpath抓取价值数据的同时一定要细心!如果想了解xpath就在下面留言,我会尽快回答!

 1 def parser(sn,url):
 2     try:
 3         headers = {
 4             。。。。。。
 5             }
 6         r = requests.get(url, headers=headers,timeout=30)
 7         html = r.content
 8         soup = BeautifulSoup(html,"lxml")
 9         dt = {}
10         #partno
11         a = soup.find("meta",itemprop="mpn")
12         if a:
13             dt['partno'] = a['content']
14         #manufacturer
15         b = soup.find("meta",itemprop="manufacturer")
16         if b:
17             dt['manufacturer'] = b['content']
18         #description
19         c = soup.find("span",itemprop="description")
20         if c:
21             dt['description'] = c.get_text().strip()
22         #price
23         price = soup.find("table",class_="table table-condensed occalc_pa_table")
24         if price:
25             cost = {}
26             for i in price.find_all('tr'):
27                 if len(i) > 1:
28                     td = i.find_all('td')
29                     key=td[0].get_text().strip().replace(',','')
30                     val=td[1].get_text().replace(u'\u20ac','').strip()
31                     if key and val:
32                         cost[key] = val
33             if cost:
34                 dt['cost'] = cost
35                 dt['currency'] = 'EUR'
36         
37         #quantity
38         d = soup.find("input",id="ItemQuantity")
39         if d:
40            dt['quantity'] = d['value']
41         #specs
42         e = soup.find("div",class_="row parameter-container")
43         if e:
44             key1 = []
45             val1= []
46             for k in e.find_all('dt'):
47                 key =  k.get_text().strip().strip('.')
48                 if key:
49                     key1.append(key)
50             for i in e.find_all('dd'):
51                 val =  i.get_text().strip()
52                 if val:
53                     val1.append(val)
54             specs = dict(zip(key1,val1))
55         if specs:
56             dt['specs'] = specs
57             print dt
58 
59             
60         if dt:
61             db[table].update({'sn':sn},{'$set':dt})
62             print str(sn) +  ' insert successfully'
63             time.sleep(3)
64         else:
65             error(str(sn) + '\t' + url)
66     except Exception,e:
67         error(str(sn) + '\t' + url)
68         print "Don't data!"

最后全部程序运行,将价值数据分析处理并存入数据库中!

 

Welcome to Python world! I have a contract in this world! How about you?
相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。 &nbsp; 相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
1月前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
91 35
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
72 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
9天前
|
数据采集 JSON 测试技术
如何在Python中高效实现CSV到JSON的数据转换
在实际项目中,数据格式转换是常见问题,尤其从CSV到JSON的转换。本文深入探讨了多种转换方法,涵盖Python基础实现、数据预处理、错误处理、性能优化及调试验证技巧。通过分块处理、并行处理等手段提升大文件转换效率,并介绍如何封装为命令行工具或Web API,实现自动化批量处理。关键点包括基础实现、数据清洗、异常捕获、性能优化和单元测试,确保转换流程稳定高效。
126 83
|
1月前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
304 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
27天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
128 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
15天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
10天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
39 12
|
2天前
|
数据采集 供应链 API
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
|
9天前
|
数据采集 存储 前端开发
用Python抓取亚马逊动态加载数据,一文读懂
用Python抓取亚马逊动态加载数据,一文读懂
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
83 16
Python时间序列分析:使用TSFresh进行自动化特征提取

热门文章

最新文章