sklearn调包侠之逻辑回归

简介: 本系列教程为《机器学习实战》的读书笔记。首先,讲讲写本系列教程的原因:第一,《机器学习实战》的代码由Python2编写,有些代码在Python3上运行已会报错,本教程基于Python3进行代码的修订;第二:之前看了一些机器学习的书籍,没有进行记录,很快就忘记掉了,通过编写教程也是一种复习的过程;第三,机器学习相对于爬虫和数据分析而言,学习难度更大,希望通过本系列文字教程,让读者在学习机器学习的路上少走弯路。

本系列教程为《机器学习实战》的读书笔记。首先,讲讲写本系列教程的原因:

第一,《机器学习实战》的代码由Python2编写,有些代码在Python3上运行已会报错,本教程基于Python3进行代码的修订.

第二:之前看了一些机器学习的书籍,没有进行记录,很快就忘记掉了,通过编写教程也是一种复习的过程.

第三,机器学习相对于爬虫和数据分析而言,学习难度更大,希望通过本系列文字教程,让读者在学习机器学习的路上少走弯路。

算法原理

传送门:机器学习实战之Logistic回归(https://www.jianshu.com/p/96566542b07a

正则化

这里补充下正则化的知识。当一个模型太复杂时,就容易过拟合,解决的办法是减少输入特征的个数,或者获取更多的训练样本。正则化也是用来解决模型过拟合的一种方法。常用的有L1和L2范数做为正则化项。

L1范数 L1范数作为正则化项,会让模型参数θ稀疏话,就是让模型参数向量里为0的元素尽量多。L1就是在成本函数后加入:

image

L2范数 而L2范数作为正则化项,则是让模型参数尽量小,但不会为0,即尽量让每个特征对预测值都有一些小的贡献。L2就是在成本函数后加入:

image

实战——乳腺癌检测

数据导入

本次实战依旧是使用sklearn中的数据集,如图所示。

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
print(cancer.DESCR)

image

切分数据集

X = cancer.data
y = cancer.target

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state

模型训练与评估

逻辑回归算法使用sklearn.linear_model 模块中的LogisticRegression方法。常用的参数如下:

penalty:设置正则化项,其取值为'l1'或'l2',默认为'l2'。

C:正则化强度,C越大,权重越小。

from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
model.fit(X_train, y_train)
model.score(X_test, y_test)

# result
# 0.94736842105263153

我们换为L1范数:

model2 = LogisticRegression(penalty='l1')
   model2.fit(X_train, y_train)
   model2.score(X_test, y_test)

   # result
   # 0.95614035087719296

这里查看模型的参数,发现确实有很多特征的参数为0。

image

原文发布时间为:2018-07-04
本文作者:罗罗攀
本文来自云栖社区合作伙伴“Python爱好者社区”,了解相关信息可以关注“Python爱好者社区

相关文章
|
JavaScript
node.js 学习入门(02 - fs系统模块)
node.js 学习入门(02 - fs系统模块)
node.js 学习入门(02 - fs系统模块)
|
分布式计算 Hadoop Unix
Hadoop Shell命令(基于linux操作系统上传下载文件到hdfs文件系统基本命令学习)
Apache-->hadoop的官网文档命令学习:http://hadoop.apache.org/docs/r1.0.4/cn/hdfs_shell.html FS Shell 调用文件系统(FS)Shell命令应使用 bin/hadoop fs 的形式。
3065 0
|
2天前
|
人工智能 自然语言处理 Shell
🦞 如何在 Moltbot 配置阿里云百炼 API
本教程指导用户在开源AI助手Clawdbot中集成阿里云百炼API,涵盖安装Clawdbot、获取百炼API Key、配置环境变量与模型参数、验证调用等完整流程,支持Qwen3-max thinking (Qwen3-Max-2026-01-23)/Qwen - Plus等主流模型,助力本地化智能自动化。
🦞 如何在 Moltbot 配置阿里云百炼 API
|
6天前
|
人工智能 API 开发者
Claude Code 国内保姆级使用指南:实测 GLM-4.7 与 Claude Opus 4.5 全方案解
Claude Code是Anthropic推出的编程AI代理工具。2026年国内开发者可通过配置`ANTHROPIC_BASE_URL`实现本地化接入:①极速平替——用Qwen Code v0.5.0或GLM-4.7,毫秒响应,适合日常编码;②满血原版——经灵芽API中转调用Claude Opus 4.5,胜任复杂架构与深度推理。
|
10天前
|
JSON API 数据格式
OpenCode入门使用教程
本教程介绍如何通过安装OpenCode并配置Canopy Wave API来使用开源模型。首先全局安装OpenCode,然后设置API密钥并创建配置文件,最后在控制台中连接模型并开始交互。
4621 8
|
16天前
|
人工智能 JavaScript Linux
【Claude Code 全攻略】终端AI编程助手从入门到进阶(2026最新版)
Claude Code是Anthropic推出的终端原生AI编程助手,支持40+语言、200k超长上下文,无需切换IDE即可实现代码生成、调试、项目导航与自动化任务。本文详解其安装配置、四大核心功能及进阶技巧,助你全面提升开发效率,搭配GitHub Copilot使用更佳。
10430 22
|
3天前
|
人工智能 自然语言处理 Cloud Native
大模型应用落地实战:从Clawdbot到实在Agent,如何构建企业级自动化闭环?
2026年初,开源AI Agent Clawdbot爆火,以“自由意志”打破被动交互,寄生社交软件主动服务。它解决“听与说”,却缺“手与脚”:硅谷Manus走API原生路线,云端自主执行;中国实在Agent则用屏幕语义理解,在封闭系统中精准操作。三者协同,正构建AI真正干活的三位一体生态。
2365 9
|
1天前
|
存储 安全 数据库
使用 Docker 部署 Clawdbot(官方推荐方式)
Clawdbot 是一款开源、本地运行的个人AI助手,支持 WhatsApp、Telegram、Slack 等十余种通信渠道,兼容 macOS/iOS/Android,可渲染实时 Canvas 界面。本文提供基于 Docker Compose 的生产级部署指南,涵盖安全配置、持久化、备份、监控等关键运维实践(官方无预构建镜像,需源码本地构建)。
1293 2
|
1天前
|
机器人 API 数据安全/隐私保护
只需3步,无影云电脑一键部署Moltbot(Clawdbot)
本指南详解Moltbot(Clawdbot)部署全流程:一、购买无影云电脑Moltbot专属套餐(含2000核时);二、下载客户端并配置百炼API Key、钉钉APP KEY及QQ通道;三、验证钉钉/群聊交互。支持多端,7×24运行可关闭休眠。
2134 2