Python3—— collections模块

简介: collections的常用类型有:计数器(Counter)双向队列(deque)默认字典(defaultdict)有序字典(OrderedDict)可命名元组(namedtuple)使用以上类型时需要导入模块...

collections的常用类型有:

计数器(Counter)

双向队列(deque)

默认字典(defaultdict)

有序字典(OrderedDict)

可命名元组(namedtuple)

使用以上类型时需要导入模块 from collections import *

collections是Python内建的一个集合模块,提供了许多有用的集合类

1. Counter

Counter 作为字典(dict)的一个子类用来进行hashtable计数,将元素进行数量统计、计数后返回一个字典,键值为元素:值为元素个数

[python]  view plain  copy
  1. s = 'abcbcaccbbad'  
  2. l = ['a','b','c','c','a','b','b']  
  3. d = {'2'3'3'2'17'2}  
  4. # Counter 获取各元素的个数,返回字典  
  5. print(Counter(s))   # Counter({'c': 4, 'b': 4, 'a': 3})  
  6. print(Counter(l))   # Counter({'b': 3, 'a': 2, 'c': 2})  
  7. print(Counter(d))   # Counter({3: 3, 2: 2, 17: 1})  

most_common

[python]  view plain  copy
  1. # most_common(int) 按照元素出现的次数进行从高到低的排序,返回前int个元素的字典  
  2. m1 = Counter(s)  
  3. print(m1)                 # Counter({'c': 4, 'b': 4, 'a': 3, 'd': 1})  
  4. print(m1.most_common(3))  # [('c', 4), ('b', 4), ('a', 3)]  

elements

[python]  view plain  copy
  1. # elements 返回经过计数器Counter后的元素,返回的是一个迭代器  
  2. e1 = Counter(s)  
  3. print(''.join(sorted(e1.elements())))  # aaabbbbcccc  
  4. e2 = Counter(d)  
  5. print(sorted(e2.elements()))  # ['17', '17', '2', '2', '2', '3', '3'] 字典返回value个key  

update

[python]  view plain  copy
  1. # update 和set集合的update一样,对集合进行并集更新  
  2. u1 = Counter(s)  
  3. u1.update('123a')  
  4. print(u1)  # Counter({'a': 4, 'c': 4, 'b': 4, '1': 1, '3': 1, '2': 1})  

substract

[python]  view plain  copy
  1. # substract 和update类似,只是update是做加法,substract做减法,从另一个集合中减去本集合的元素,  
  2. sub1 = 'which'  
  3. sub2 = 'whatw'  
  4. subset = Counter(sub1)  
  5. print(subset)   # Counter({'h': 2, 'i': 1, 'c': 1, 'w': 1})  
  6. subset.subtract(Counter(sub2))  
  7. print(subset)   # Counter({'c': 1, 'i': 1, 'h': 1, 'a': -1, 't': -1, 'w': -1}) sub1中的h变为2,sub2中h为1,减完以后为1  

iteritems

与字典dict的items类似,返回由Counter生成的字典的所有item,只是在Counter中此方法返回的是一个迭代器,而不是列表

iterkeys

与字典dict的keys方法类似,返回由Counter生成的字典的所有key,只是在Counter中此方法返回的是一个迭代器,而不是列表

itervalues

与字典dict的values方法类似,返回由Counter生成的字典的所有value,只是在Counter中此方法返回的是一个迭代器,而不是列表

2.deque

deque 包含在文件_collections.py中,属于高性能的数据结构(High performance data structures)之一.可以从两端添加和删除元素,常用的结构是它的简化版

deque常用方法:

deque

[python]  view plain  copy
  1. str1 = 'abc123cd'  
  2. dq = deque(str1)  
  3. print(dq)        # deque(['a', 'b', 'c', '1', '2', '3', 'c', 'd'])  

append

队列右边添加元素

appendleft

队列左边添加元素
[python]  view plain  copy
  1. dq = deque('abc123')  
  2. dq.append('right')  
  3. dq.appendleft('left')  
  4. print(dq) # deque(['left', 'a', 'b', 'c', '1', '2', '3', 'right'])  

clear

clear 清空队列中的所有元素

count

count(value)  返回队列中包含value的个数,结果类型为 integer

extend

extend 队列右边扩展,可以是列表、元组或字典,如果是字典则将字典的key加入到deque

extendleft

extendleft  同extend, 在左边扩展
[python]  view plain  copy
  1. dq = deque('abc123')  
  2. dq.extend({1:10,2:20})  
  3. dq.extendleft('L')  
  4. print(dq) # deque(['L', 'a', 'b', 'c', '1', '2', '3', 1, 2])  

pop

pop  移除并且返回队列右边的元素

popleft

popleft 移除并且返回队列左边的元素

remove

remove(value) 移除队列第一个出现的元素(从左往右开始的第一次出现的元素value)

reverse

reverse  队列的所有元素进行反转

rotate

rotate(n) 对队列的数进行移动,若n<0,则往左移动即将左边的第一个移动到最后,移动n次,n>0 往右移动
[python]  view plain  copy
  1. dq = deque([1,2,3,4,5])  
  2. dq.rotate(-1# 左移,1往左移动一位到5后面  
  3. print(dq)  

3.defaultdict

默认字典,是字典的一个子类,继承有字典的方法和属性,默认字典在进行定义初始化的时候可以指定字典值得默认类型:
[python]  view plain  copy
  1. dic = collections.defaultdict(dict)  
  2. dic['k1'].update({'k2':'aaa'})  
  3. print(dic)  
我们看上面的例子,字典dic在定义的时候就定义好了值为字典类型,虽然现在字典中还没有键值 k1,但仍然可以执行字典的update方法. 这种操作方式在传统的字典类型中是无法实现的,必须赋值以后才能进行值得更新操作,否则会报错。
我看看一下传统的字典类型
[python]  view plain  copy
  1. b = dict()  
  2. b['k1'].append('2')  
  3. # TypeError: 'type' object is not iterable  

4.OrderedDict 

OrderDict 叫做有序字典,也是字典类型(dict)的一个子类,是对字典的一个补充。 前面我们说过,字典类型是一个无序的集合,如果要想将一个传统的字典类型进行排序一般会怎么做了,我们可能会将字典的键值取出来做排序后在根据键值来进行有序的输出,我们看下面的一个例子:
[python]  view plain  copy
  1. # 定义传统字典  
  2. dic1 = dict()  
  3. # 按顺序添加字典内容  
  4. dic1['a'] = '123'  
  5. dic1['b'] = 'jjj'  
  6. dic1['c'] = '394'  
  7. dic1['d'] = '999'  
  8. print(dic1)    # 结果: {'a': '123', 'c': '394', 'b': 'jjj', 'd': '999'}  
  9. # 排序  
  10. dic1_key_list = []  
  11. for k in dic1.keys():  
  12.     dic1_key_list.append(k)  
  13. dic1_key_list.sort()  
  14. for key in dic1_key_list:  
  15.     print('dic1字典排序结果 %s:%s' %(key,dic1[key]))  

以上为定义传统字典类型时的一个简单排序过程。 如果我们定义一个有序字典时,将不用再如此麻烦, 字典顺序将按照录入顺序进行排序且不会改变。
[python]  view plain  copy
  1. # 定义有序字典  
  2. dic2 = OrderedDict()  
  3. dic2['a'] = '123'  
  4. dic2['b'] = 'jjj'  
  5. dic2['c'] = 'abc'  
  6. dic2['d'] = '999'  
  7. for k, v in dic2.iteritems():  
  8.     print('有序字典:%s:%s' %(k,v))  

 

5.namedtuple

标准的tuple类型使用数字索引来访问元素,

[python]  view plain  copy
  1. bob = ('Bob'30'male')  
  2. print('Representation:', bob)  
  3.   
  4. jane = ('Jane'29'female')  
  5. print('\nField by index:', jane[0])  
  6.   
  7. print('\nFields by index:')  
  8. for p in [bob, jane]:  
  9.     print('%s is a %d year old %s' % p)  

这种对于标准的元组访问,我们需要知道元素对应下标索引值,但当元组的元素很多时,我们可能无法知道每个元素的具体索引值,这个时候就是可命名元组登场的时候了。

nametuple 的创建是由自己的类工厂nametuple()进行创建,而不是由标准的元组来进行实例化,通过nametuple()创建类的参数包括类名称和一个包含元素名称的字符串

[python]  view plain  copy
  1. from collections import namedtuple  
  2.   
  3. #创建一个nametuplede 类,类名称为Person,并赋给变量P  
  4. P = namedtuple('Person''name,age,gender')  
  5. print('Type of Person:', type(P))  # Type of Person: <class 'type'>  
  6.   
  7. #通过Person类实例化一个对象bob  
  8. bob = P(name='Bob', age=30, gender='male')  
  9. print('\nRepresentation:', bob)  # Representation: Person(name='Bob', age=30, gender='male')  
  10.   
  11. #通过Person类实例化一个对象jane  
  12. jane = P(name='Jane', age=29, gender='female')  
  13. print('\nField by name:', jane.name)  # Field by name: Jane  
  14.   
  15. print('\nFields by index:')  
  16. for p in [bob, jane]:  
  17.     print('%s is a %d year old %s' % p)  
  18. # Fields by index:  
  19. # Bob is a 30 year old male  
  20. # Jane is a 29 year old female  

通过上面的实例可以看出,我们通过nametuple()创建了一个Person的类,并复制给P变量,Person的类成员包括name,age,gender,并且顺序已经定了,在实例化zhangsan这个对象的时候,对张三的属性进行了定义。这样我们在访问zhangsan这个元组的时候就可以通过张三的属性来复制(zhangsan.name、zhangsan.age等)。这样就算这个元组有1000个元素我们都能通过元素的名称来访问而不用考虑元素的下标索引值。

非法的参数值

使用nametuple()来创建类的时候,传递的成员属性参数名称不能非法(不能为系统参数名称),且参数名称不能重复,否则会报值错误

[python]  view plain  copy
  1. # 参数字段的名称非法,包含系统名称class  
  2. try:  
  3.     p = namedtuple('Person','age,name,class,gender')  
  4.     print(p._fields)  
  5. except ValueError as err:  
  6.     print(err)  
  7.   
  8. # Type names and field names cannot be a keyword: 'class'  
  9.   
  10. # 类成员字段参数名称重复 age  
  11. try:  
  12.     p1 = namedtuple('Person','age,gender,name,age')  
  13.     print(p1._fields)  
  14. except ValueError as err:  
  15.     print(err)  
  16. # Encountered duplicate field name: 'age'  

但是也有时候我们是无法控制的,如果参数的名称来自外部,比如是通过读取数据库中的内容来传递的参数,此时我们无法手工的修改参数名称,那该如何是好呢! 别担心,只需要增加一个属性就OK了,它就是rename

[python]  view plain  copy
  1. # 参数字段的名称非法,包含系统名称class  
  2. try:  
  3.     p = namedtuple('Person','age,name,class,gender',rename=True)  
  4.     print(p._fields)  
  5. except ValueError as err:  
  6.     print(err)  
  7.   
  8. # ('age', 'name', '_2', 'gender')  
  9.   
  10. # 类成员字段参数名称重复 age  
  11. try:  
  12.     p1 = namedtuple('Person','age,gender,name,age',rename=True)  
  13.     print(p1._fields)  
  14. except ValueError as err:  
  15.     print(err)  
  16. # ('age', 'gender', 'name', '_3')  

从以上的实例我们看出,当有参数错误的时候,系统自动将错误的参数通过增加 "下划线+参数索引" 的方式自动将参数名称替换了。


转载博客:https://blog.csdn.net/songfreeman/article/details/50502194

相关文章
|
3月前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
445 7
|
3月前
|
监控 安全 程序员
Python日志模块配置:从print到logging的优雅升级指南
从 `print` 到 `logging` 是 Python 开发的必经之路。`print` 调试简单却难维护,日志混乱、无法分级、缺乏上下文;而 `logging` 支持级别控制、多输出、结构化记录,助力项目可维护性升级。本文详解痛点、优势、迁移方案与最佳实践,助你构建专业日志系统,让程序“有记忆”。
300 0
|
3月前
|
JSON 算法 API
Python中的json模块:从基础到进阶的实用指南
本文深入解析Python内置json模块的使用,涵盖序列化与反序列化核心函数、参数配置、中文处理、自定义对象转换及异常处理,并介绍性能优化与第三方库扩展,助你高效实现JSON数据交互。(238字)
426 4
|
开发者 Python
如何在Python中管理模块和包的依赖关系?
在实际开发中,通常会结合多种方法来管理模块和包的依赖关系,以确保项目的顺利进行和可维护性。同时,要及时更新和解决依赖冲突等问题,以保证代码的稳定性和可靠性
584 159
|
3月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
354 0
|
3月前
|
XML JSON 数据处理
超越JSON:Python结构化数据处理模块全解析
本文深入解析Python中12个核心数据处理模块,涵盖csv、pandas、pickle、shelve、struct、configparser、xml、numpy、array、sqlite3和msgpack,覆盖表格处理、序列化、配置管理、科学计算等六大场景,结合真实案例与决策树,助你高效应对各类数据挑战。(238字)
238 0
|
4月前
|
安全 大数据 程序员
Python operator模块的methodcaller:一行代码搞定对象方法调用的黑科技
`operator.methodcaller`是Python中处理对象方法调用的高效工具,替代冗长Lambda,提升代码可读性与性能。适用于数据过滤、排序、转换等场景,支持参数传递与链式调用,是函数式编程的隐藏利器。
157 4
|
4月前
|
存储 数据库 开发者
Python SQLite模块:轻量级数据库的实战指南
本文深入讲解Python内置sqlite3模块的实战应用,涵盖数据库连接、CRUD操作、事务管理、性能优化及高级特性,结合完整案例,助你快速掌握SQLite在小型项目中的高效使用,是Python开发者必备的轻量级数据库指南。
383 0
|
5月前
|
存储 安全 数据处理
Python 内置模块 collections 详解
`collections` 是 Python 内置模块,提供多种高效数据类型,如 `namedtuple`、`deque`、`Counter` 等,帮助开发者优化数据处理流程,提升代码可读性与性能,适用于复杂数据结构管理与高效操作场景。
386 0
|
6月前
|
数据安全/隐私保护 Python
抖音私信脚本app,协议私信群发工具,抖音python私信模块
这个实现包含三个主要模块:抖音私信核心功能类、辅助工具类和主程序入口。核心功能包括登录

推荐镜像

更多