TensorFlow——MNIST手写数字识别

简介: MNIST手写数字识别MNIST数据集介绍和下载:http://yann.lecun.com/exdb/mnist/一、数据集介绍: MNIST是一个入门级的计算机视觉数据集 下载下来的数据集被分成两部分:60000行的训练数据集(mnist.
MNIST手写数字识别
MNIST数据集介绍和下载: http://yann.lecun.com/exdb/mnist/

一、数据集介绍:
MNIST是一个入门级的 计算机视觉数据集
下载下来的数据集被分成两部分:60000行的 训练数据集 mnist.train )和10000行的 测试数据集 mnist.test



二、Softmax回归函数

三、TensorFlow实现MNIST手写数字识别
(1)构建一个只有 输入层 输出层 的简单神经网络模型,使用 二次代价函数 梯度下降算法 进行优化;代码如下:
#TensorFlow实现MNIST手写数字识别-简单版本
import tensorflow as tf
#Tensorflow提供了一个类来处理MNIST数据
from tensorflow.examples.tutorials.mnist import input_data

#载入数据集
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)

#设置每个批次的大小
batch_size=100
#计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size

#定义两个placeholder
x=tf.placeholder(tf.float32,[None,784])
y=tf.placeholder(tf.float32,[None,10])

#创建一个简单的神经网络(只有输入层和输出层)
Weights=tf.Variable(tf.zeros([784,10]))
biases=tf.Variable(tf.zeros([10]))
prediction=tf.nn.softmax(tf.matmul(x,Weights)+biases)

#定义代价函数(均方差函数)
loss=tf.reduce_mean(tf.square(y-prediction))
#定义反向传播算法(使用梯度下降算法)
train_step=tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#结果存放在一个布尔型列表中(argmax函数返回一维张量中最大的值所在的位置)
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))

#求准确率(tf.cast将布尔值转换为float型)
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

#创建会话
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer()) #初始化变量
    #训练次数
    for i in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys=mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})

        acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print("Iter"+str(i)+",Testing Accuracy"+str(acc))
结果为:

(2)模型同上,使用 交叉熵函数 梯度下降算法 进行优化,
把上面代码的代价函数改为下面的 交叉熵代价函数
loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) 
结果为:

(3) 构建一个 多层 的神经网络模型,使用 交叉熵函数 梯度下降算法 进行优化,添加 Dropout 防止过拟合;
模型结构如下:

代码如下:


import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#载入数据集
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)

#设置每个批次的大小
batch_size=100
#计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size

#定义三个placeholder
x=tf.placeholder(tf.float32,[None,784])
y=tf.placeholder(tf.float32,[None,10])
keep_prob=tf.placeholder(tf.float32)  #存放百分率

#创建一个多层神经网络模型
#第一个隐藏层
W1=tf.Variable(tf.truncated_normal([784,2000],stddev=0.1))
b1=tf.Variable(tf.zeros([2000])+0.1)
L1=tf.nn.tanh(tf.matmul(x,W1)+b1)
L1_drop=tf.nn.dropout(L1,keep_prob) #keep_prob设置工作状态神经元的百分率
#第二个隐藏层
W2=tf.Variable(tf.truncated_normal([2000,2000],stddev=0.1))
b2=tf.Variable(tf.zeros([2000])+0.1)
L2=tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
L2_drop=tf.nn.dropout(L2,keep_prob)
#第三个隐藏层
W3=tf.Variable(tf.truncated_normal([2000,1000],stddev=0.1))
b3=tf.Variable(tf.zeros([1000])+0.1)
L3=tf.nn.tanh(tf.matmul(L2_drop,W3)+b3)
L3_drop=tf.nn.dropout(L3,keep_prob)
#输出层
W4=tf.Variable(tf.truncated_normal([1000,10],stddev=0.1))
b4=tf.Variable(tf.zeros([10])+0.1)
prediction=tf.nn.softmax(tf.matmul(L3_drop,W4)+b4)

#定义交叉熵代价函数
loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#定义反向传播算法(使用梯度下降算法)
train_step=tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#结果存放在一个布尔型列表中(argmax函数返回一维张量中最大的值所在的位置)
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))

#求准确率(tf.cast将布尔值转换为float型)
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

#创建会话
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer()) #初始化变量
    #训练次数
    for i in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys=mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})
        #测试数据计算出的准确率
        test_acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
        print("Iter"+str(i)+",Testing Accuracy"+str(test_acc))
结果为:


补充:

防止过拟合的常用方法

常用优化器







参考资料:MNIST机器学习入门

书籍:《TensorFlow实战 Google深度学习框架》



相关文章
|
7月前
|
机器学习/深度学习 算法 TensorFlow
【Python深度学习】Tensorflow对半环形数据分类、手写数字识别、猫狗识别实战(附源码)
【Python深度学习】Tensorflow对半环形数据分类、手写数字识别、猫狗识别实战(附源码)
132 0
|
4月前
|
机器学习/深度学习 API 算法框架/工具
【Tensorflow+keras】Keras API三种搭建神经网络的方式及以mnist举例实现
使用Keras API构建神经网络的三种方法:使用Sequential模型、使用函数式API以及通过继承Model类来自定义模型,并提供了基于MNIST数据集的示例代码。
63 12
|
7月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
用TensorFlow实现MNIST神经网络
用TensorFlow实现MNIST神经网络
|
7月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Keras+计算机视觉+Tensorflow】DCGAN对抗生成网络在MNIST手写数据集上实战(附源码和数据集 超详细)
【Keras+计算机视觉+Tensorflow】DCGAN对抗生成网络在MNIST手写数据集上实战(附源码和数据集 超详细)
146 0
|
机器学习/深度学习 算法 TensorFlow
【深度学习】实验14 使用CNN完成MNIST手写体识别(TensorFlow)
【深度学习】实验14 使用CNN完成MNIST手写体识别(TensorFlow)
143 0
|
TensorFlow 算法框架/工具 计算机视觉
|
机器学习/深度学习 PyTorch 测试技术
|
机器学习/深度学习 TensorFlow 算法框架/工具
TensorFlow MNIST手写数字识别(神经网络极简版)
TensorFlow MNIST手写数字识别(神经网络极简版)
TensorFlow MNIST手写数字识别(神经网络极简版)
|
机器学习/深度学习 存储 算法
100天搞定机器学习|day39 Tensorflow Keras手写数字识别
100天搞定机器学习|day39 Tensorflow Keras手写数字识别
100天搞定机器学习|day39 Tensorflow Keras手写数字识别
|
机器学习/深度学习 TensorFlow 算法框架/工具
TensorFlow实现GAN生成对抗网络生成MNIST图像
TensorFlow实现GAN生成对抗网络生成MNIST图像
179 0