CNN卷积神经网络

简介: 一、BP神经网络回顾人工全连接神经网络(1)每相邻两层之间的每个神经元之间都是有边相连的(2)当输入层的特征维度变得很高时,这时全连接网络需要训练              的参数就会增大很多,计算速度就会变得...

一、BP神经网络回顾


人工全连接神经网络
(1)每相邻两层之间的每个神经元之间都是有边相连的
(2)当输入层的特征维度变得很高时,这时全连接网络需要训练
              的参数就会增大很多,计算速度就会变得很慢
传统神经网络存在的问题:
(1)权值太多,计算量太大
(2)权值太多,需要大量样本进行训练

二、CNN卷积神经网络
1、CNN的主要概述
卷积层的神经元只与前一层的 部分神经元节点相连 ,即它的神经元间的连接是非全连接的,且同一层中某些神经元之间的连接的 权重w 偏置b 是共享的(即相同的)
      大量地减少了需要训练参数的数量
CNN主要特点 :减少权值,局部连接,权值共享
CNN通过 感受野 权值共享 减少了神经网络需要训练的参数的个数。
2、CNN的一般结构
输入层 :用于数据的输入
卷积层 :使用 卷积核 进行 特征提取 特征映射
激励层 :由于卷积也是一种线性运算,因此需要增加非线性映射
池化层 :压缩数据和参数的量,减小过拟合。
全连接层 :通常在 CNN 的尾部进行重新拟合,减少特征信息的损失
输出层 :用于输出结果
(1)输入层
在CNN的输入层中,(图片)数据输入的格式与全连接神经网络的输入格式(一维向量)不太一样。CNN的输入层的输入 格式保留了图片本身的结构
对于黑白的 28×28 的图片,CNN的输入是一个28×28 的的 二维神经元
对于RGB格式的28×28图片,CNN的输入则是一个 3×28×28 的 三维神经元 (RGB中的每一个颜色通道都有一个 28×28 的矩阵),如下图所示:

(2)卷积层
需要明确的几个概念:
感受视野(  local receptive fields
    即感受 上一层的部分特征。在卷积神经网络中,隐藏层中的神经元的感受视野比较小,只能看到上一次的 部分特征 ,上一层的其他特征可以通过 平移感受视野 来得到同一层的其他神经元。
卷积核
    感受视野中的 权重矩阵
共享权值( shared weights
步长( stride
    感受 视野对输入的扫描间隔称为 步长( stride
边界扩充( pad
     当 步长比较大时( stride>1 ),为了扫描到边缘的一些特征,感受视野可能会 “出界” ,这时需要对 边界扩充 (pad)
特征映射图( feature map
     通过一 个带有 卷积核 感受视野  扫描生成的下一层神经元矩阵 称为一个 特征映射图( feature map
通过以下图理解以上概念及卷积计算



(3)激励层
激励层主要对卷积层的输出进行一个 非线性映射 ,因为卷积层的计算还是一种线性计算。使用的激励函数一般为 ReLu 函数
      卷积 层和激励层通常合并在一起称为“卷积层”。
(4)池化层
当输入经过卷积层时,若感受视野比较小,布长 stride 比较小,得到的 feature map (特征映射图)还是比较大,可以通过池化层来对每一个 feature map 进行 降维操作 ,输出的深度还是不变的,依然为 feature map 的个数。
池化层也有一个“池化视野( filter )”来对 feature map 矩阵进行扫描,对“池化视野”中的 矩阵值进行计算 ,一般有两种计算方式:
   (1 Max pooling :取“池化视野”矩阵中的 最大值
   (2 Average pooling :取“池化视野”矩阵中的 平均值


(5)全连接层和输出层
全连接层 主要对特征进行重新拟合,减少特征信息的丢失。
输出层 主要准备做好最后目标结果的输出。
(6)中间还可以使用其他的功能层
归一化层 Batch Normalization ):在 CNN 中对特征的归一化
  切分层 :对某些(图片)数据的进行分区域的单独学习
   融合层 :对独立进行特征学习的分支进行融合



CNN卷积神经网络实现Mnist数据集:








参考博客资料:




相关文章
|
10天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
CNN构建网络
【8月更文挑战第10天】CNN构建网络。
44 22
|
10天前
|
机器学习/深度学习
CNN网络编译和训练
【8月更文挑战第10天】CNN网络编译和训练。
44 20
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
卷积神经网络(CNN):视觉识别的革命先锋
卷积神经网络(CNN)作为人工智能领域的一颗璀璨明珠,在计算机视觉中发挥着核心作用。CNN的发展历程展现了从生物学灵感到技术创新的转变,历经LeNet-5至AlexNet、VGGNet、ResNet等里程碑式的进步。其独特结构包括卷积层、池化层及全连接层,能够层层递进地提取特征并作出决策。CNN不仅在图像分类、目标检测等领域表现卓越,还在人脸识别、医学影像分析等方面展现出巨大潜力。尽管存在局限性,如对序列数据处理能力有限及解释性问题,但通过引入注意力机制、自监督学习等方法,CNN将持续演进,引领人工智能技术走向更加精彩的未来。
26 2
|
16天前
|
机器学习/深度学习 人工智能 算法框架/工具
深入理解深度学习中的卷积神经网络
【8月更文挑战第4天】本文旨在探索卷积神经网络(CNN)的奥秘,从其基本构成到在图像识别领域的应用。我们将通过Python代码示例,展示如何构建一个简单的CNN模型,并讨论其在处理实际问题时的效能。文章末尾将提出一个思考性问题,激发读者对深度学习未来方向的想象。
|
6天前
|
机器学习/深度学习 自然语言处理 算法
基于卷积神经网络(CNN)的垃圾邮件过滤方法
传统的垃圾邮件过滤手段如规则匹配常因垃圾邮件的多变而失效。基于深度学习的方法,特别是卷积神经网络(CNN),能自动学习邮件中的复杂特征,有效识别垃圾邮件的新形态。CNN通过特征学习、处理复杂结构、良好的泛化能力和适应性,以及高效处理大数据的能力,显著提升了过滤精度。在文本分类任务中,CNN通过卷积层提取局部特征,池化层减少维度,全连接层进行分类,特别适合捕捉文本的局部模式和顺序信息,从而构建高效的垃圾邮件过滤系统。
25 0
|
14天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于CNN卷积神经网络的MPSK调制识别matlab仿真
本项目展示一种基于CNN的MPSK调制识别算法,可在Matlab 2022a上运行。该算法能自动区分BPSK、QPSK及8PSK信号,利用卷积层捕捉相位特征并通过全连接层分类。训练过程涉及调整网络权重以最小化预测误差,最终实现对未知信号的有效识别。附带完整代码与说明视频。
|
3天前
|
SQL 安全 网络安全
网络安全与信息安全:保护数字世界的基石
【8月更文挑战第16天】在数字化时代,网络安全与信息安全的重要性日益凸显。本文将深入探讨网络安全漏洞、加密技术以及安全意识等关键领域,旨在为读者提供全面的知识分享和实践指导。我们将从网络攻击的常见类型及其防御措施出发,进一步讨论加密技术在保障数据安全中的作用,并强调提升个人和企业的安全意识的必要性。通过分析真实案例,本文旨在帮助读者构建更加坚固的网络安全防线,共同守护我们的数字生活。
|
4天前
|
SQL 安全 网络安全
网络安全与信息安全:漏洞、加密技术与安全意识的探讨
【8月更文挑战第16天】在数字化时代,网络安全与信息安全成为维护社会稳定和保护个人隐私的重要议题。本文将深入探讨网络安全漏洞的成因、影响及防范措施,介绍加密技术的基本原理和应用,并强调提升公众的安全意识在构建网络防线中的重要性。通过分析当前网络安全面临的挑战,提出加强技术防护和提高用户安全意识的双重策略,旨在为读者提供全面的网络安全知识分享。
23 9
|
2天前
|
云安全 安全 网络安全
云计算与网络安全:探索云服务时代的信息安全挑战##
【8月更文挑战第17天】 在数字化浪潮的推动下,云计算技术以其高效、灵活的特点成为现代企业不可或缺的一部分。然而,随着企业数据的云端迁移,网络安全问题也日益凸显。本文将从云计算服务的基本概念出发,深入探讨其在网络安全领域面临的挑战,包括数据隐私保护、安全漏洞管理等关键问题,并分析当前云安全策略的有效性。通过案例分析,揭示云计算环境下的安全风险,并提出相应的解决策略和建议,旨在为读者提供一个全面而深入的视角,理解云计算与网络安全之间的复杂关系。 ##
|
4天前
|
存储 安全 网络安全
信息安全:网络安全审计技术原理与应用.
信息安全:网络安全审计技术原理与应用.
17 4

热门文章

最新文章