Distribute Cached 使用

简介: 在Kettle中说到Pentaho的MapReduce要用到它,就查了一下关于它的资料,以下是从官方查到的内容,记录一下。
在Kettle中说到Pentaho的MapReduce要用到它,就查了一下关于它的资料,以下是从官方查到的内容,记录一下。
DistributedCache: 一些比较小的需要共享的文件或者jar包,我们先存到hdfs上,然后在MapReduce线程当中进行共享,直接用了。
// Setting up the cache for the application
     
     1. Copy the requisite files to the FileSystem:
     
     $ bin/hadoop fs -copyFromLocal lookup.dat /myapp/lookup.dat  
     $ bin/hadoop fs -copyFromLocal map.zip /myapp/map.zip  
     $ bin/hadoop fs -copyFromLocal mylib.jar /myapp/mylib.jar
     $ bin/hadoop fs -copyFromLocal mytar.tar /myapp/mytar.tar
     $ bin/hadoop fs -copyFromLocal mytgz.tgz /myapp/mytgz.tgz
     $ bin/hadoop fs -copyFromLocal mytargz.tar.gz /myapp/mytargz.tar.gz

     
     2. Setup the application's JobConf:
     
     JobConf job = new JobConf();
    // #lookup.dat 表示给前面的这个文件取一个别名,类似sql里面的as别名一样
     DistributedCache.addCacheFile(new URI("/myapp/lookup.dat#lookup.dat"), 
                                   job);
     DistributedCache.addCacheArchive(new URI("/myapp/map.zip", job);
     DistributedCache.addFileToClassPath(new Path("/myapp/mylib.jar"), job);
     DistributedCache.addCacheArchive(new URI("/myapp/mytar.tar", job);
     DistributedCache.addCacheArchive(new URI("/myapp/mytgz.tgz", job);
     DistributedCache.addCacheArchive(new URI("/myapp/mytargz.tar.gz", job);

     
     3. Use the cached files in the Mapper
     or Reducer:
     
     public static class MapClass extends MapReduceBase  
     implements Mapper<K, V, K, V> {
     
       private Path[] localArchives;
       private Path[] localFiles;
       
       public void configure(JobConf job) {
         // Get the cached archives/files
         localArchives = DistributedCache.getLocalCacheArchives(job);
         localFiles = DistributedCache.getLocalCacheFiles(job);
       }
       
       public void map(K key, V value, 
                       OutputCollector<K, V> output, Reporter reporter) 
       throws IOException {
         // Use data from the cached archives/files here
         // ...
         // ...
         output.collect(k, v);
       }
     }
查看代码了才知道其实它根本不是什么缓存,它只不过是在配置文件中的指定属性记录下相应的值,然后在mapreduce的时候,调用配置文件里面的属性值,然后取得需要的文件盒jar包。
目录
相关文章
|
11月前
|
存储 算法 安全
探究‘公司禁用 U 盘’背后的哈希表算法与 Java 实现
在数字化办公时代,信息安全至关重要。许多公司采取“禁用U盘”策略,利用哈希表算法高效管理外接设备的接入权限。哈希表通过哈希函数将设备标识映射到数组索引,快速判断U盘是否授权。例如,公司预先将允许的U盘标识存入哈希表,新设备接入时迅速验证,未授权则禁止传输并报警。这有效防止恶意软件和数据泄露,保障企业信息安全。 代码示例展示了如何用Java实现简单的哈希表,模拟公司U盘管控场景。哈希表不仅用于设备管理,还在文件索引、用户权限等多方面助力信息安全防线的构建,为企业数字化进程保驾护航。
|
10月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
363 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
消息中间件 Web App开发 JavaScript
Node.js【简介、安装、运行 Node.js 脚本、事件循环、ES6 作业队列、Buffer(缓冲区)、Stream(流)】(一)-全面详解(学习总结---从入门到深化)(上)
Node.js【简介、安装、运行 Node.js 脚本、事件循环、ES6 作业队列、Buffer(缓冲区)、Stream(流)】(一)-全面详解(学习总结---从入门到深化)
841 0
|
12月前
|
机器学习/深度学习 自然语言处理 算法
政府部门文档管理革新:实现90%自动内容抽取与智能标签化处理!
本文介绍了多模态数据处理技术,涵盖自然语言处理(NLP)、光学字符识别(OCR)和图像识别的技术原理,以及智能分类、标签化处理、系统集成与国产化适配、安全与合规、算法优化等方面的内容。通过这些技术的应用,实现了文档管理的全流程智能化,为用户提供高效、可靠的解决方案。
363 3
|
前端开发 API
react如何进行项目配置代理
react如何进行项目配置代理
417 0
|
12月前
|
前端开发 搜索推荐 C++
Marp 教程:如何在 VSCode 中引入自定义样式和主题
本文介绍了如何在 Marp 中引入自定义样式和主题,使你的幻灯片更加个性化和独特。首先,你需要安装 VSCode 和 Marp 插件,了解 Marp 的基本结构。接着,通过创建自定义 CSS 文件并在 Markdown 文件中引入,实现样式定制。此外,还可以创建和使用自定义主题,以及进行高级自定义,如调整布局、引入自定义字体和定义复杂动画。最后,使用 Marp 的预览功能实时查看效果。
|
中间件 API 开发者
深入理解Python Web框架:中间件的工作原理与应用策略
【7月更文挑战第19天】Python Web中间件摘要:**中间件是扩展框架功能的关键组件,它拦截并处理请求与响应。在Flask中,通过`before_request`和`after_request`装饰器模拟中间件行为;Django则有官方中间件系统,需实现如`process_request`和`process_response`等方法。中间件用于日志、验证等场景,但应考虑性能、执行顺序、错误处理和代码可维护性。
265 0
|
SQL 缓存 监控
实时计算 Flink版产品使用问题之怎么手动清理缓存或废弃文件
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
STM32CubeMX 定时器
STM32CubeMX 定时器
627 0
|
人工智能 负载均衡 监控