来看一场 AI 重建的 3D 全息世界杯比赛!

简介:

世界杯来了!央视名嘴白岩松调侃 “俄罗斯世界杯,中国除了足球队没去,其他的都去了”,这届世界杯,中国球迷购买球票的数量在所有国家中排名第 9,可见球迷对世界杯的热情。那么,除了准备好小龙虾在电视机前观看世界杯比赛,你有没有想过让 C罗、梅西或者内马尔在你家桌子上踢一场比赛会是什么样子?

华盛顿大学、Facebook 和 Google 的研究人员开发了第一个端到端的深度学习系统,该系统可以将足球比赛的 YouTube 视频转换为运动的 3D 全息图。

用CNN重建一场足球比赛

“对一场足球比赛进行单目重建有很多挑战。我们必须估计相对于场地的摄像机姿态,检测并跟踪每个球员,重新构建他们的身体形状和姿势,并对联合重建进行渲染,” 研究人员在他们的研究论文中写道。

708ee208e6ed4615c11c99ad6fb1b3a47edfa387

图1:以足球比赛的 YouTube 视频为输入,系统输出比赛的动态 3D 重建,可以使用增强现实设备在桌面上以交互式的方式观看。

下面的视频演示了这个系统:

22c3b3ff5830573d3ada097a6e5d2c213c786fc6

这种方法的关键是卷积神经网络(CNN),研究人员通过训练 CNN 来估计每个球员与拍摄比赛的摄像机之间的距离。该网络分析了从足球视频游戏《FIFA》中提取的12000 张 2D 球员图像,以及从游戏引擎提取的相应 3D 数据,以了解两者之间的相关性。

这样,网络就能从没见过的 2D 图像中预估球员的深度图( depth maps)。当被展示没见过的视频时,系统能准确地预测每个球员的深度图,并将其与颜色素材结合,以3D 的方式重建每个球员。

ca386db0cea8ee3bd78765502c3d81aeb5337c64

图 2:重建方法的概览

以 YouTube 视频的帧作为输入,我们使用 field lines 来恢复摄像机参数。然后,提取边界框、姿势和轨迹(跨多个帧)来分割球员。通过在视频游戏数据上训练好的深度网络,我们在游戏环境中重建了每个球员的深度图,这样就可以在 3D 查看器或 AR 设备上呈现出来。

然后,球员们被放在一个虚拟的足球场上。其结果令人惊叹,并且可以通过 3D 查看器或 AR 设备从任何角度观看比赛。

9b58fc867040fe47fb14dda1b1df788210e5f948

图3:训练数据:从《FIFA》游戏中提取图像和对应的深度,这里展示了几个可视化为深度图和网格的例子。

该团队使用 NVIDIA GeForce GTX 1080 GPU 和 NVIDIA TITAN Xp GPU,以及cuDNN 加速的 PyTorch 深度学习框架,在从世界杯比赛视频中提取的数小时的 3D 球员数据上对卷积神经网络进行训练。

基于这些比赛视频数据,神经网络能够重构球场上的每个球员的深度图,这些图可以在3D 查看器或 AR 设备上呈现。

67358526a064b5a9b04cd6b019e3308816681532

“事实证明,在玩 EA 的《FIFA》游戏并截取游戏引擎和 GPU 间的调用时,可以从视频游戏中提取深度图。具体来说,我们使用 RenderDoc 来截取游戏引擎和 GPU 之间的调用。” 研究团队表示:“FIFA 与大多数游戏类似,在游戏过程中使用延迟渲染。通过访问 GPU 调用,可以捕获每帧的深度和颜色缓冲区。一旦特定的帧被捕获了深度和颜色,就可以提取出球员。”

ed667bf746e2ea3e65bcaae617f24b5ee2bd9be3

图4:合成数据集的结果以及与当前最优技术和 ground truth 的比较,可视化为depth maps 和 3D 网格。我们的方法更准确,实现了更好的网格重构。

为了验证这个系统,研究团队用 YouTube 上找到的 10 个高分辨率的职业足球比赛视频测试他们的方法。值得注意的是,该系统只在合成视频素材上进行训练。但是,在真实的场景中,系统也有非常好的结果。

ab60b45a3c55955110c079949b52a1d1b1fa6020

研究人员用微软的 HoloLens AR 眼镜进行测试。HoloLens 可以将 3D 重建叠加到真实的桌面上。最终的产品虽然不完美,它无法重建球,不能实时地工作,并且只允许从视频录制的球场侧面观看。但是,这项技术可能比当前 3D 重建运动的最先进方法更具可扩展性,因为当前的方法需要在每一个角度布置相机。研究人员称,这种方法也适用于预定义的其他事件,例如音乐会或剧场。

882e716996d6e86be0042704e84a9fe6766793ce

研究人员承认他们的系统并不完美。他们的下一个项目将专注于训练系统以更好地检测球,并开发可从任何角度观察的系统。

这项研究将于 6 月 18 日至 22 日在犹他州盐湖城举行的年度计算机视觉和模式识别(CVPR)会议上首次亮相。


原文发布时间为:2018-06-26

本文来自云栖社区合作伙伴“数据与算法之美”,了解相关信息可以关注“数据与算法之美”。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
人工智能 物联网 定位技术
让AI绘图动起来并走进现实——LoRA模型-3D - Anagly
让AI绘图动起来并走进现实——LoRA模型-3D - Anagly
343 0
|
9天前
|
机器学习/深度学习 人工智能 编解码
VideoVAE+:AI 生成视频高保真重建和跨模态重建工具,基于文本信息指导视频重建,提升视频细节质量
VideoVAE+ 是香港科技大学推出的先进跨模态视频变分自编码器,通过时空分离压缩机制和文本指导,实现了高效视频压缩与精准重建。
46 7
VideoVAE+:AI 生成视频高保真重建和跨模态重建工具,基于文本信息指导视频重建,提升视频细节质量
|
1月前
|
人工智能 vr&ar
GeneMAN:上海AI Lab联合北大等高校推出的3D人体模型创建框架
GeneMAN是由上海AI实验室、北京大学、南洋理工大学和上海交通大学联合推出的3D人体模型创建框架。该框架能够从单张图片中生成高保真度的3D人体模型,适用于多种应用场景,如虚拟试衣、游戏和娱乐、增强现实和虚拟现实等。
64 7
GeneMAN:上海AI Lab联合北大等高校推出的3D人体模型创建框架
|
5月前
|
机器学习/深度学习 人工智能 编解码
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
3D智能导诊系统源码,基于AI引擎,针对患者的病情及症状,结合性别年龄特征,智能推荐医院科室
智能导诊系统是一款基于AI技术的医疗辅助工具,利用自然语言处理和机器学习分析患者病情,精准推荐科室和医生。系统支持按性别分类导诊,设有3D人体模型辅助定位症状,界面简洁易操作。采用B/S架构,可无缝对接HIS数据库,支持多种接入形式,包括公众号、小程序和App,有效提升就诊效率并减轻医护人员负担。
|
7月前
|
人工智能 图形学
【制作100个unity游戏之24】unity制作一个3D动物AI生态系统游戏2(附项目源码)
【制作100个unity游戏之24】unity制作一个3D动物AI生态系统游戏2(附项目源码)
101 1
【制作100个unity游戏之24】unity制作一个3D动物AI生态系统游戏2(附项目源码)
|
5月前
|
机器学习/深度学习 人工智能 算法
|
7月前
|
人工智能 算法 计算机视觉
无论真实还是AI视频,摩斯卡都能重建恢复4D动态可渲染场景
【6月更文挑战第30天】摩斯卡系统革命性地从单视角视频重建4D动态场景,融合2D视觉模型与物理优化,实现渲染。利用“Motion Scaffold”表示几何、外观和运动,即使在多视角输入困难时也能保证高质量重建与渲染。虽有输入质量和计算资源限制,但其创新性提升了动态场景处理的实用性和可控性。[arXiv:2405.17421](https://arxiv.org/pdf/2405.17421)
69 2
|
7月前
|
人工智能 图形学
【制作100个unity游戏之24】unity制作一个3D动物AI生态系统游戏1(附项目源码)
【制作100个unity游戏之24】unity制作一个3D动物AI生态系统游戏1(附项目源码)
105 2
|
7月前
|
机器学习/深度学习 人工智能
可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊
【6月更文挑战第4天】AI在可控核聚变研究中实现双托卡马克装置3D磁场全自动优化,助力抑制边缘能量爆发(ELMs),提升核聚变性能90%,成果登上《自然通讯》。虽有ELMs少量出现及装置适应性问题,但这一突破为经济可行的核聚变能源发展迈出重要步伐。[论文链接](https://www.nature.com/articles/s41467-024-48415-w)
122 1