Pandas基础复习-DataFrame

简介: 数据类型-DataFrameDataFrame是由多个Series数据列组成的表格数据类型,每行Series值都增加了一个共用的索引既有行索引,又有列索引 行索引,表明不同行,横向索引,叫index,0轴,axis...

数据类型-DataFrame

  • DataFrame是由多个Series数据列组成的表格数据类型,每行Series值都增加了一个共用的索引
  • 既有行索引,又有列索引
    • 行索引,表明不同行,横向索引,叫index,0轴,axis=0
    • 列索引,表名不同列,纵向索引,叫columns,1轴,axis=1
  • DataFrame数据类型可视为:二维 带标签 数组
  • 每列值的类型可以不同
  • 基本操作类似Series,依据行列索引操作
  • 常用于表达二维数据,但也可以表达多维数据(Dataframe嵌套,极少用)

DataFrame数据类型创建

Python list列表 创建DataFrame

import pandas as pd

df = pd.DataFrame([True, 1, 2.3, 'a', '你好']) # 1维
df
0
0 True
1 1
2 2.3
3 a
4 你好
df = pd.DataFrame([[True,1,2.3,'a','你好'],[1,2,3,4,5]]) #2维
df
0 1 2 3 4
0 True 1 2.3 a 你好
1 1 2 3.0 4 5
# 3维,不建议
df = pd.DataFrame([[[True,1,2.3,'a','你好'],
                    [1,2,3,4,5]],
                   [[True,1,2.3,'a','你好'],
                    [1,2,3,4,5]]
                  ]) 
df
0 1
0 [True, 1, 2.3, a, 你好] [1, 2, 3, 4, 5]
1 [True, 1, 2.3, a, 你好] [1, 2, 3, 4, 5]

Python 字典 创建DataFrame

df = pd.DataFrame({'one':[1,2,3,4],
                   'two':[9,8,7,6]})
df
one two
0 1 9
1 2 8
2 3 7
3 4 6
# 自定义行索引
df = pd.DataFrame({'one':[1,2,3,4],
                   'two':[9,8,7,6]},index = ['a','b','c','d']) 
df
one two
a 1 9
b 2 8
c 3 7
d 4 6
df = pd.DataFrame({
    'A' : 1,
    'B' : 2.3,
    'C' : ['x','y',5] #需要多行
})
df
A B C
0 1 2.3 x
1 1 2.3 y
2 1 2.3 5
dt = {
    'one' : pd.Series([1,2,3],index=['a','b','c']),
    'two' : pd.Series([9,8,7,6],index=['a','b','c','d',])
}
dt
{'one': a    1
 b    2
 c    3
 dtype: int64, 'two': a    9
 b    8
 c    7
 d    6
 dtype: int64}
# one two自动列索引,abcd自动行索引.每个元素对应DataFrame的一列,每个元素内的键值对应一行
d = pd.DataFrame(dt) 
d
one two
a 1.0 9
b 2.0 8
c 3.0 7
d NaN 6
# 数据根据行列索引自动补齐
d_2 = pd.DataFrame(dt,index=['b','c','d'],columns=['two','three']) 
d_2
two three
b 8 NaN
c 7 NaN
d 6 NaN

ndarray数组 创建DataFrame

import numpy as np

df = pd.DataFrame(np.arange(10).reshape(2,5)) # 自动生成行/列索引
df
0 1 2 3 4
0 0 1 2 3 4
1 5 6 7 8 9
# 自定义行列索引
df = pd.DataFrame(np.random.randn(6,4),
                  index=[1,2,3,4,5,6],
                  columns=['a','b','c','d']) 
df
a b c d
1 0.274340 0.296507 0.751198 0.763512
2 0.181134 0.675380 0.553695 0.632163
3 -0.059765 0.347702 1.138297 -0.143998
4 -1.370677 -0.951640 0.135964 -0.665875
5 1.490610 0.420539 0.628784 2.119896
6 -1.669737 1.167765 1.254722 -0.948624

Series 创建DataFrame

e = pd.DataFrame([pd.Series([1,2,3]),
                  pd.Series([9,8,7,6])],
                 index=['a','b'])
e
0 1 2 3
a 1.0 2.0 3.0 NaN
b 9.0 8.0 7.0 6.0

DataFrame属性


di = {
    '姓名':['张三','李四','王五','赵六'],
    '性别':['男','女','女','男'],
    '年龄':[12,22,32,42],
    '地址':['北京','上海','广州','深圳']
}
di
{'地址': ['北京', '上海', '广州', '深圳'],
 '姓名': ['张三', '李四', '王五', '赵六'],
 '年龄': [12, 22, 32, 42],
 '性别': ['男', '女', '女', '男']}
d = pd.DataFrame(di,index=['d1','d2','d3','d4'])
d
地址 姓名 年龄 性别
d1 北京 张三 12
d2 上海 李四 22
d3 广州 王五 32
d4 深圳 赵六 42
d.head() # 显示头部几行
地址 姓名 年龄 性别
d1 北京 张三 12
d2 上海 李四 22
d3 广州 王五 32
d4 深圳 赵六 42
d.tail(3) # 显示末尾几行
地址 姓名 年龄 性别
d2 上海 李四 22
d3 广州 王五 32
d4 深圳 赵六 42
d.info() # 相关信息概览
<class 'pandas.core.frame.DataFrame'>
Index: 4 entries, d1 to d4
Data columns (total 4 columns):
地址    4 non-null object
姓名    4 non-null object
年龄    4 non-null int64
性别    4 non-null object
dtypes: int64(1), object(3)
memory usage: 160.0+ bytes
d.shape # 行数 列数
(4, 4)
d.dtypes # 列数据类型
地址    object
姓名    object
年龄     int64
性别    object
dtype: object
d.index # 获取行索引
Index(['d1', 'd2', 'd3', 'd4'], dtype='object')
d.columns # 获取列索引
Index(['地址', '姓名', '年龄', '性别'], dtype='object')
d.values # 获取值
array([['北京', '张三', 12, '男'],
       ['上海', '李四', 22, '女'],
       ['广州', '王五', 32, '女'],
       ['深圳', '赵六', 42, '男']], dtype=object)

DataFrame查增改删

查 Read

类list/ndarray数据访问方式

dates = pd.date_range('20130101',periods=10)
dates
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06', '2013-01-07', '2013-01-08',
               '2013-01-09', '2013-01-10'],
              dtype='datetime64[ns]', freq='D')
df = pd.DataFrame(np.random.randn(10,4),index=dates,columns=['A','B','C','D'])
df
A B C D
2013-01-01 0.754077 -0.346202 -0.557050 0.778106
2013-01-02 0.103394 -1.051044 -0.413054 0.268955
2013-01-03 0.174730 2.056007 1.781379 1.643397
2013-01-04 -0.950517 -0.226887 -0.097138 -0.442010
2013-01-05 0.076178 -0.518970 1.142290 -0.952401
2013-01-06 1.371702 -1.028873 -1.470106 -0.113098
2013-01-07 0.126720 -0.251519 -2.212507 1.050036
2013-01-08 -1.246918 1.530266 1.761499 0.940741
2013-01-09 0.941099 -2.420932 1.927863 -0.549143
2013-01-10 1.951555 -0.264012 -0.171690 0.869293
#索引
df['A']
2013-01-01    0.754077
2013-01-02    0.103394
2013-01-03    0.174730
2013-01-04   -0.950517
2013-01-05    0.076178
2013-01-06    1.371702
2013-01-07    0.126720
2013-01-08   -1.246918
2013-01-09    0.941099
2013-01-10    1.951555
Freq: D, Name: A, dtype: float64
df.A
2013-01-01    0.754077
2013-01-02    0.103394
2013-01-03    0.174730
2013-01-04   -0.950517
2013-01-05    0.076178
2013-01-06    1.371702
2013-01-07    0.126720
2013-01-08   -1.246918
2013-01-09    0.941099
2013-01-10    1.951555
Freq: D, Name: A, dtype: float64
df['A']['2013-01-01'] # 先列后行
0.75407705661157032
df.A['2013-01-01']
0.75407705661157032
df[['A','C']]
A C
2013-01-01 0.754077 -0.557050
2013-01-02 0.103394 -0.413054
2013-01-03 0.174730 1.781379
2013-01-04 -0.950517 -0.097138
2013-01-05 0.076178 1.142290
2013-01-06 1.371702 -1.470106
2013-01-07 0.126720 -2.212507
2013-01-08 -1.246918 1.761499
2013-01-09 0.941099 1.927863
2013-01-10 1.951555 -0.171690
Pandas专用的数据访问方式 — .loc 通过自定义索引获取数据
#选取某行
df.loc['2013-01-01']
A    0.754077
B   -0.346202
C   -0.557050
D    0.778106
Name: 2013-01-01 00:00:00, dtype: float64
#选取某列
df.loc[:,'A']
2013-01-01    0.754077
2013-01-02    0.103394
2013-01-03    0.174730
2013-01-04   -0.950517
2013-01-05    0.076178
2013-01-06    1.371702
2013-01-07    0.126720
2013-01-08   -1.246918
2013-01-09    0.941099
2013-01-10    1.951555
Freq: D, Name: A, dtype: float64
# 选取特定值
df.loc['2013-01-01','A'] # 先行后列
0.75407705661157032
# 选取指定的行/列
df.loc[[dates[0],dates[2]],:] # 指定行
A B C D
2013-01-01 0.754077 -0.346202 -0.557050 0.778106
2013-01-03 0.174730 2.056007 1.781379 1.643397
df.loc[:,['A','B']] # 指定列
A B
2013-01-01 0.754077 -0.346202
2013-01-02 0.103394 -1.051044
2013-01-03 0.174730 2.056007
2013-01-04 -0.950517 -0.226887
2013-01-05 0.076178 -0.518970
2013-01-06 1.371702 -1.028873
2013-01-07 0.126720 -0.251519
2013-01-08 -1.246918 1.530266
2013-01-09 0.941099 -2.420932
2013-01-10 1.951555 -0.264012
df.loc[[dates[0],dates[2]],['A','B']] # 指定行列
A B
2013-01-01 0.754077 -0.346202
2013-01-03 0.174730 2.056007
# 切片
df.loc['2013-01-01':'2013-01-04',:] # 对行切片
A B C D
2013-01-01 0.754077 -0.346202 -0.557050 0.778106
2013-01-02 0.103394 -1.051044 -0.413054 0.268955
2013-01-03 0.174730 2.056007 1.781379 1.643397
2013-01-04 -0.950517 -0.226887 -0.097138 -0.442010
df.loc[:,'A':'C'] # 对列切片
A B C
2013-01-01 0.754077 -0.346202 -0.557050
2013-01-02 0.103394 -1.051044 -0.413054
2013-01-03 0.174730 2.056007 1.781379
2013-01-04 -0.950517 -0.226887 -0.097138
2013-01-05 0.076178 -0.518970 1.142290
2013-01-06 1.371702 -1.028873 -1.470106
2013-01-07 0.126720 -0.251519 -2.212507
2013-01-08 -1.246918 1.530266 1.761499
2013-01-09 0.941099 -2.420932 1.927863
2013-01-10 1.951555 -0.264012 -0.171690
# 切片选取连续区块。行,列。左开右闭
df.loc['2013-01-01':'2013-01-04','A':'C'] 
A B C
2013-01-01 0.754077 -0.346202 -0.557050
2013-01-02 0.103394 -1.051044 -0.413054
2013-01-03 0.174730 2.056007 1.781379
2013-01-04 -0.950517 -0.226887 -0.097138

.iloc 通过默认索引获取数据

# 选取某行
df.iloc[3]
A   -0.950517
B   -0.226887
C   -0.097138
D   -0.442010
Name: 2013-01-04 00:00:00, dtype: float64
# 选取某列
df.iloc[:,2]
2013-01-01   -0.557050
2013-01-02   -0.413054
2013-01-03    1.781379
2013-01-04   -0.097138
2013-01-05    1.142290
2013-01-06   -1.470106
2013-01-07   -2.212507
2013-01-08    1.761499
2013-01-09    1.927863
2013-01-10   -0.171690
Freq: D, Name: C, dtype: float64
# 选取特定值:
df.iloc[1,2]
-0.41305425875508139
# 选取指定的行/列
df.iloc[[1,2,4],:] # 指定行
A B C D
2013-01-02 0.103394 -1.051044 -0.413054 0.268955
2013-01-03 0.174730 2.056007 1.781379 1.643397
2013-01-05 0.076178 -0.518970 1.142290 -0.952401
df.iloc[:,[0,2]] # 指定列
A C
2013-01-01 0.754077 -0.557050
2013-01-02 0.103394 -0.413054
2013-01-03 0.174730 1.781379
2013-01-04 -0.950517 -0.097138
2013-01-05 0.076178 1.142290
2013-01-06 1.371702 -1.470106
2013-01-07 0.126720 -2.212507
2013-01-08 -1.246918 1.761499
2013-01-09 0.941099 1.927863
2013-01-10 1.951555 -0.171690
df.iloc[[1,2,4],[0,2]] # 指定行列 ,先行后列
A C
2013-01-02 0.103394 -0.413054
2013-01-03 0.174730 1.781379
2013-01-05 0.076178 1.142290
# 切片
df.iloc[1:3,:] # 对行切片:
A B C D
2013-01-02 0.103394 -1.051044 -0.413054 0.268955
2013-01-03 0.174730 2.056007 1.781379 1.643397
df.iloc[:,1:3] # 对列切片:
B C
2013-01-01 -0.346202 -0.557050
2013-01-02 -1.051044 -0.413054
2013-01-03 2.056007 1.781379
2013-01-04 -0.226887 -0.097138
2013-01-05 -0.518970 1.142290
2013-01-06 -1.028873 -1.470106
2013-01-07 -0.251519 -2.212507
2013-01-08 1.530266 1.761499
2013-01-09 -2.420932 1.927863
2013-01-10 -0.264012 -0.171690
df.iloc[3:5,0:2] # 切片选取连续区块。行,列。左开右闭
A B
2013-01-04 -0.950517 -0.226887
2013-01-05 0.076178 -0.518970

Boolean索引

# 通过某列选择数据:
df[df.A > 0]
A B C D
2013-01-01 0.754077 -0.346202 -0.557050 0.778106
2013-01-02 0.103394 -1.051044 -0.413054 0.268955
2013-01-03 0.174730 2.056007 1.781379 1.643397
2013-01-05 0.076178 -0.518970 1.142290 -0.952401
2013-01-06 1.371702 -1.028873 -1.470106 -0.113098
2013-01-07 0.126720 -0.251519 -2.212507 1.050036
2013-01-09 0.941099 -2.420932 1.927863 -0.549143
2013-01-10 1.951555 -0.264012 -0.171690 0.869293
# 通过where选择数据:
b = df[df > 0]
b
A B C D
2013-01-01 0.754077 NaN NaN 0.778106
2013-01-02 0.103394 NaN NaN 0.268955
2013-01-03 0.174730 2.056007 1.781379 1.643397
2013-01-04 NaN NaN NaN NaN
2013-01-05 0.076178 NaN 1.142290 NaN
2013-01-06 1.371702 NaN NaN NaN
2013-01-07 0.126720 NaN NaN 1.050036
2013-01-08 NaN 1.530266 1.761499 0.940741
2013-01-09 0.941099 NaN 1.927863 NaN
2013-01-10 1.951555 NaN NaN 0.869293
type(b['A']['2013-01-01'])
numpy.float64
# 通过 isin() 过滤数据:
df2 = df.copy()
df2['E'] = ['one', 'one','two','three','four','three','five','four','three','five']
df2
A B C D E
2013-01-01 0.754077 -0.346202 -0.557050 0.778106 one
2013-01-02 0.103394 -1.051044 -0.413054 0.268955 one
2013-01-03 0.174730 2.056007 1.781379 1.643397 two
2013-01-04 -0.950517 -0.226887 -0.097138 -0.442010 three
2013-01-05 0.076178 -0.518970 1.142290 -0.952401 four
2013-01-06 1.371702 -1.028873 -1.470106 -0.113098 three
2013-01-07 0.126720 -0.251519 -2.212507 1.050036 five
2013-01-08 -1.246918 1.530266 1.761499 0.940741 four
2013-01-09 0.941099 -2.420932 1.927863 -0.549143 three
2013-01-10 1.951555 -0.264012 -0.171690 0.869293 five
df2['E'].isin(['one','four'])
2013-01-01     True
2013-01-02     True
2013-01-03    False
2013-01-04    False
2013-01-05     True
2013-01-06    False
2013-01-07    False
2013-01-08     True
2013-01-09    False
2013-01-10    False
Freq: D, Name: E, dtype: bool
df2[df2['E'].isin(['one','four'])]
A B C D E
2013-01-01 0.754077 -0.346202 -0.557050 0.778106 one
2013-01-02 0.103394 -1.051044 -0.413054 0.268955 one
2013-01-05 0.076178 -0.518970 1.142290 -0.952401 four
2013-01-08 -1.246918 1.530266 1.761499 0.940741 four

增 Create

s1 = pd.Series([1,2,3,4,5,6], 
               index=pd.date_range('20130102', periods=6))
s1
2013-01-02    1
2013-01-03    2
2013-01-04    3
2013-01-05    4
2013-01-06    5
2013-01-07    6
Freq: D, dtype: int64
# 新增一列数据
df2['F'] = s1
df2
A B C D E F
2013-01-01 0.754077 -0.346202 -0.557050 0.778106 one NaN
2013-01-02 0.103394 -1.051044 -0.413054 0.268955 one 1.0
2013-01-03 0.174730 2.056007 1.781379 1.643397 two 2.0
2013-01-04 -0.950517 -0.226887 -0.097138 -0.442010 three 3.0
2013-01-05 0.076178 -0.518970 1.142290 -0.952401 four 4.0
2013-01-06 1.371702 -1.028873 -1.470106 -0.113098 three 5.0
2013-01-07 0.126720 -0.251519 -2.212507 1.050036 five 6.0
2013-01-08 -1.246918 1.530266 1.761499 0.940741 four NaN
2013-01-09 0.941099 -2.420932 1.927863 -0.549143 three NaN
2013-01-10 1.951555 -0.264012 -0.171690 0.869293 five NaN

改 Update

# 更新一列值
df2.loc[:,'D']
2013-01-01    0.778106
2013-01-02    0.268955
2013-01-03    1.643397
2013-01-04   -0.442010
2013-01-05   -0.952401
2013-01-06   -0.113098
2013-01-07    1.050036
2013-01-08    0.940741
2013-01-09   -0.549143
2013-01-10    0.869293
Freq: D, Name: D, dtype: float64
df2.loc[:,'D'] = 5
df2
A B C D E F
2013-01-01 0.754077 -0.346202 -0.557050 5 one NaN
2013-01-02 0.103394 -1.051044 -0.413054 5 one 1.0
2013-01-03 0.174730 2.056007 1.781379 5 two 2.0
2013-01-04 -0.950517 -0.226887 -0.097138 5 three 3.0
2013-01-05 0.076178 -0.518970 1.142290 5 four 4.0
2013-01-06 1.371702 -1.028873 -1.470106 5 three 5.0
2013-01-07 0.126720 -0.251519 -2.212507 5 five 6.0
2013-01-08 -1.246918 1.530266 1.761499 5 four NaN
2013-01-09 0.941099 -2.420932 1.927863 5 three NaN
2013-01-10 1.951555 -0.264012 -0.171690 5 five NaN
df2.iloc[1,3]
5
df2.iloc[1,3] = 10.1
df2
A B C D E F
2013-01-01 0.754077 -0.346202 -0.557050 5.0 one NaN
2013-01-02 0.103394 -1.051044 -0.413054 10.1 one 1.0
2013-01-03 0.174730 2.056007 1.781379 5.0 two 2.0
2013-01-04 -0.950517 -0.226887 -0.097138 5.0 three 3.0
2013-01-05 0.076178 -0.518970 1.142290 5.0 four 4.0
2013-01-06 1.371702 -1.028873 -1.470106 5.0 three 5.0
2013-01-07 0.126720 -0.251519 -2.212507 5.0 five 6.0
2013-01-08 -1.246918 1.530266 1.761499 5.0 four NaN
2013-01-09 0.941099 -2.420932 1.927863 5.0 three NaN
2013-01-10 1.951555 -0.264012 -0.171690 5.0 five NaN
# 通过where更新
df3 = df.copy()
df3[df3 > 0] = -df3
df3
A B C D
2013-01-01 -0.754077 -0.346202 -0.557050 -0.778106
2013-01-02 -0.103394 -1.051044 -0.413054 -0.268955
2013-01-03 -0.174730 -2.056007 -1.781379 -1.643397
2013-01-04 -0.950517 -0.226887 -0.097138 -0.442010
2013-01-05 -0.076178 -0.518970 -1.142290 -0.952401
2013-01-06 -1.371702 -1.028873 -1.470106 -0.113098
2013-01-07 -0.126720 -0.251519 -2.212507 -1.050036
2013-01-08 -1.246918 -1.530266 -1.761499 -0.940741
2013-01-09 -0.941099 -2.420932 -1.927863 -0.549143
2013-01-10 -1.951555 -0.264012 -0.171690 -0.869293
目录
相关文章
|
17天前
|
存储 数据挖掘 数据处理
掌握Pandas核心数据结构:Series与DataFrame的四种创建方式
本文介绍了 Pandas 库中核心数据结构 Series 和 DataFrame 的四种创建方法,包括从列表、字典、标量和 NumPy 数组创建 Series,以及从字典、列表的列表、NumPy 数组和 Series 字典创建 DataFrame,通过示例详细说明了每种创建方式的具体应用。
115 67
|
3月前
|
SQL 索引 Python
Pandas中DataFrame合并的几种方法
Pandas中DataFrame合并的几种方法
236 0
|
3天前
|
存储 数据挖掘 索引
Pandas数据结构:Series与DataFrame
本文介绍了 Python 的 Pandas 库中两种主要数据结构 `Series` 和 ``DataFrame`,从基础概念入手,详细讲解了它们的创建、常见问题及解决方案,包括数据缺失处理、数据类型转换、重复数据删除、数据筛选、排序、聚合和合并等操作。同时,还提供了常见报错及解决方法,帮助读者更好地理解和使用 Pandas 进行数据分析。
34 10
|
17天前
|
存储 数据挖掘 索引
Pandas Series 和 DataFrame 常用属性详解及实例
Pandas 是 Python 数据分析的重要工具,其核心数据结构 Series 和 DataFrame 广泛应用。本文详细介绍了这两种结构的常用属性,如 `index`、`values`、`dtype` 等,并通过具体示例帮助读者更好地理解和使用这些属性,提升数据分析效率。
35 4
|
1月前
|
SQL 数据采集 数据可视化
Pandas 数据结构 - DataFrame
10月更文挑战第26天
53 2
Pandas 数据结构 - DataFrame
|
7月前
|
数据可视化 数据挖掘 数据处理
进阶 pandas DataFrame:挖掘高级数据处理技巧
【5月更文挑战第19天】本文介绍了Pandas DataFrame的高级使用技巧,包括数据重塑(如`pivot`和`melt`)、字符串处理(如提取和替换)、日期时间处理(如解析和时间序列操作)、合并与连接(如`merge`和`concat`),以及使用`apply()`应用自定义函数。这些技巧能提升数据处理效率,适用于复杂数据分析任务。推荐进一步学习和探索Pandas的高级功能。
|
4月前
|
索引 Python
Pandas学习笔记之Dataframe
Pandas学习笔记之Dataframe
|
4月前
|
数据挖掘 大数据 数据处理
数据分析师的秘密武器:精通Pandas DataFrame合并与连接技巧
【8月更文挑战第22天】在数据分析中,Pandas库的DataFrame提供高效的数据合并与连接功能。本文通过实例展示如何按员工ID合并基本信息与薪资信息,并介绍如何基于多列(如员工ID与部门ID)进行更复杂的连接操作。通过调整`merge`函数的`how`参数(如&#39;inner&#39;、&#39;outer&#39;等),可实现不同类型的连接。此外,还介绍了使用`join`方法根据索引快速连接数据,这对于处理大数据集尤其有用。掌握这些技巧能显著提升数据分析的能力。
87 1
|
4月前
【Pandas+Python】初始化一个全零的Dataframe
初始化一个100*3的0矩阵,变为Dataframe类型,并为每列赋值一个属性。
58 2
|
4月前
|
SQL 数据采集 JSON
Pandas 使用教程 Series、DataFrame
Pandas 使用教程 Series、DataFrame
75 0
下一篇
DataWorks