Pandas数据规整

简介: Pandas数据规整数据分析和建模方面的大量编程工作都是用在数据准备上的,有时候存放在文件或数据库中的数据并不能满足数据处理应用的要求Pandas提供了一组高级的、灵活的、高效的核心函数和算法,它们能够轻松地将数据规...

Pandas数据规整

数据分析和建模方面的大量编程工作都是用在数据准备上的,有时候存放在文件或数据库中的数据并不能满足数据处理应用的要求

Pandas提供了一组高级的、灵活的、高效的核心函数和算法,它们能够轻松地将数据规整化为你需要的形式


合并

连接

Pandas提供了大量方法,能轻松的对Series,DataFrame和Panel执行合并操作

连接pandas对象 .concat()

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.randn(10, 4))
df.head()
0 1 2 3
0 0.231308 1.193636 -0.033288 0.826399
1 -0.421474 -0.618510 -1.266325 -0.439435
2 -0.279457 0.578144 1.131353 -0.639720
3 -1.197750 -0.446579 0.495728 0.900704
4 -0.638926 -0.233019 -1.106248 -0.762133
pieces = [df[:2], df[3:5], df[7:]] # 这里面切片是前闭后开的
pieces
[          0         1         2         3
 0  0.231308  1.193636 -0.033288  0.826399
 1 -0.421474 -0.618510 -1.266325 -0.439435,
           0         1         2         3
 3 -1.197750 -0.446579  0.495728  0.900704
 4 -0.638926 -0.233019 -1.106248 -0.762133,
           0         1         2         3
 7 -0.265515 -0.705797  0.695531 -0.257374
 8  0.552615 -0.137180  0.859215 -0.853752
 9 -1.014105  0.392409 -1.832748  0.612679]
df2 = pd.concat(pieces)
df2
0 1 2 3
0 0.231308 1.193636 -0.033288 0.826399
1 -0.421474 -0.618510 -1.266325 -0.439435
3 -1.197750 -0.446579 0.495728 0.900704
4 -0.638926 -0.233019 -1.106248 -0.762133
7 -0.265515 -0.705797 0.695531 -0.257374
8 0.552615 -0.137180 0.859215 -0.853752
9 -1.014105 0.392409 -1.832748 0.612679

追加 .append()

df = pd.DataFrame(np.random.randn(4, 4), columns=['A','B','C','D'])
df
A B C D
0 1.295901 -0.742636 0.873728 -0.810075
1 1.073456 0.344627 0.156597 1.460616
2 1.696282 -1.272457 1.226460 -1.944458
3 -0.473047 0.147528 -0.538231 0.125467
s = df.iloc[2]
s
A    1.696282
B   -1.272457
C    1.226460
D   -1.944458
Name: 2, dtype: float64
df.append(s, ignore_index=True)
A B C D
0 1.295901 -0.742636 0.873728 -0.810075
1 1.073456 0.344627 0.156597 1.460616
2 1.696282 -1.272457 1.226460 -1.944458
3 -0.473047 0.147528 -0.538231 0.125467
4 1.696282 -1.272457 1.226460 -1.944458

分组

group by():一般指以下一个或多个操作步骤

  • Splitting 将数据分组
  • Applying 对每个分组应用不同的function
  • Combining 使用某种数据结果展示结果
df = pd.DataFrame({
    'A' : ['foo', 'bar', 'foo', 'bar','foo', 'bar', 'foo', 'foo'],
    'B' : ['one', 'one', 'two', 'three','two', 'two', 'one', 'three'],
    'C' : np.random.randn(8),
    'D' : np.random.randn(8)
    })
df
A B C D
0 foo one 0.556699 1.543716
1 bar one -0.905349 -0.054870
2 foo two 1.220397 -0.589706
3 bar three 0.637305 -0.046351
4 foo two -0.150553 -0.889157
5 bar two -0.771132 0.196547
6 foo one 0.008275 -0.571672
7 foo three 0.228275 -1.164593
# 分组后sum求和:
a = df.groupby('A').sum()
a
C D
A
bar -1.039176 0.095325
foo 1.863094 -1.671411
a = df.groupby('A',as_index=False).sum()
a
A C D
0 bar -1.039176 0.095325
1 foo 1.863094 -1.671411
# 对多列分组后sum:
b = df.groupby(['A','B']).sum()
b
C D
A B
bar one -0.905349 -0.054870
three 0.637305 -0.046351
two -0.771132 0.196547
foo one 0.564975 0.972044
three 0.228275 -1.164593
two 1.069844 -1.478862
b = df.groupby(['A','B'],as_index=False).sum()
b
A B C D
0 bar one -0.905349 -0.054870
1 bar three 0.637305 -0.046351
2 bar two -0.771132 0.196547
3 foo one 0.564975 0.972044
4 foo three 0.228275 -1.164593
5 foo two 1.069844 -1.478862
目录
相关文章
|
2月前
|
Serverless 数据处理 索引
Pandas中的shift函数:轻松实现数据的前后移动
Pandas中的shift函数:轻松实现数据的前后移动
168 0
|
8天前
|
Python
|
8天前
|
Python
|
7天前
|
Python
Pandas 常用函数-数据合并
Pandas 常用函数-数据合并
24 1
|
8天前
|
索引 Python
Pandas 常用函数-数据排序
10月更文挑战第28天
8 1
|
9天前
|
Python
Pandas 常用函数-查看数据
Pandas 常用函数-查看数据
10 2
|
9天前
|
SQL JSON 数据库
Pandas 常用函数-读取数据
Pandas 常用函数-读取数据
10 2
|
12天前
|
Python
通过Pandas库处理股票收盘价数据,识别最近一次死叉后未出现金叉的具体位置的方法
在金融分析领域,"死叉"指的是短期移动平均线(如MA5)下穿长期移动平均线(如MA10),而"金叉"则相反。本文介绍了一种利用Python编程语言,通过Pandas库处理股票收盘价数据,识别最近一次死叉后未出现金叉的具体位置的方法。该方法首先计算两种移动平均线,接着确定它们的交叉点,最后检查并输出最近一次死叉及其后是否形成了金叉。此技术广泛应用于股市趋势分析。
29 2
|
7天前
|
Python
Pandas 常用函数-数据选择和过滤
Pandas 常用函数-数据选择和过滤
7 0
|
1月前
|
数据可视化 数据挖掘 数据处理
模型预测笔记(四):pandas_profiling生成数据报告
本文介绍了pandas_profiling库,它是一个Python工具,用于自动生成包含多种统计指标和可视化的详细HTML数据报告,支持大型数据集并允许自定义配置。安装命令为`pip install pandas_profiling`,使用示例代码`pfr = pandas_profiling.ProfileReport(data_train); pfr.to_file("./example.html")`。
39 1

热门文章

最新文章