多线程同步基础

简介: 主线程执行完要等待其他线程执行完,才退出虚拟机主线程执行完需要让其他线程也结束,可设置为守护线程,守护线程必须在线程启动前开启实现方式和继承方式的区别:实现方式好处避免了但继承的局限性(不能继承其他类,只能继承Thread类)定义线程时,建议使用实现方式。两种方式区别:继承Thread:线程代码存放Thread子类的run方法中实现Runnable:线程代码存放接口子类


主线程执行完要等待其他线程执行完,才退出虚拟机



主线程执行完需要让其他线程也结束,可设置为守护线程,守护线程必须在线程启动前开启



实现方式和继承方式的区别:

实现方式好处避免了但继承的局限性(不能继承其他类,只能继承Thread类)

定义线程时,建议使用实现方式。

两种方式区别:

继承Thread:线程代码存放Thread子类的run方法中

实现Runnable:线程代码存放接口子类的run方法中


同步的前提:
1,必须要有两个或者两个以上的线程。
2,必须是多个线程使用同一个锁(同一个对象)。

必须保证同步中只能有一个线程在运行。


如何判断程序是否有安全问题:
1,明确哪些代码是多线程运行代码。
2,明确共享数据。
3,明确多线程运行代码中哪些语句是操作共享数据的。


同步的两种表现形式:同步代码块和同步函数

同步代码块


Object obj = new Object();

synchronized(obj)
            {
               //todo
            }


同步函数(使用的锁是this)

同步函数被静态修饰后使用的锁不再是this,因为静态方法中不可以有this,

静态的同步方法使用的锁是该方法所在类的字节码文件对象。 类名.class

public synchronized void add(int n)
    {
       
       
    }



    public static synchronized void show()
    {
        
    }

同步代码块和同步函数要使用同一把锁需要让同步代码块的锁设为this或者类名.class


多线程单例最好写成饿汉式(函数里面只有一句话)

class Single
{
    private static final Single s = new Single();
    private Single(){}
    public static Single getInstance()
    {
        return s;
    }
}


懒汉式的延时加载多线程访问时会出现安全问题,同步锁是该类的字节码对象

class Single
{
    private static Single s = null;
    private Single(){}


    public static  Single getInstance()
    {
        if(s==null)
        {
            synchronized(Single.class)
            {
                if(s==null)
                    //--->A;
                    s = new Single();
            }
        }
        return s;
    }
}





同步弊端死锁-同步嵌套,锁不一样

/*
死锁。
同步中嵌套同步。

*/

class Ticket implements Runnable
{
    private  int tick = 1000;
    Object obj = new Object();
    boolean flag = true;
    public  void run()
    {
        if(flag)
        {
            while(true)
            {
                synchronized(obj)
                {
                    show();
                }
            }
        }
        else
            while(true)
                show();
    }
    public synchronized void show()//this
    {
        synchronized(obj)
        {
            if(tick>0)
            {
                try{Thread.sleep(10);}catch(Exception e){}
                System.out.println(Thread.currentThread().getName()+"....code : "+ tick--);
            }
        }
    }
}


class  DeadLockDemo
{
    public static void main(String[] args) 
    {

        Ticket t = new Ticket();

        Thread t1 = new Thread(t);
        Thread t2 = new Thread(t);
        t1.start();
        try{Thread.sleep(10);}catch(Exception e){}
        t.flag = false;
        t2.start();


    }
}


class Test implements Runnable
{
    private boolean flag;
    Test(boolean flag)
    {
        this.flag = flag;
    }

    public void run()
    {
        if(flag)
        {
            while(true)
            {
                synchronized(MyLock.locka)
                {
                    System.out.println(Thread.currentThread().getName()+"...if locka ");
                    synchronized(MyLock.lockb)
                    {
                        System.out.println(Thread.currentThread().getName()+"..if lockb");                    
                    }
                }
            }
        }
        else
        {
            while(true)
            {
                synchronized(MyLock.lockb)
                {
                    System.out.println(Thread.currentThread().getName()+"..else lockb");
                    synchronized(MyLock.locka)
                    {
                        System.out.println(Thread.currentThread().getName()+".....else locka");
                    }
                }
            }
        }
    }
}


class MyLock
{
    static Object locka = new Object();
    static Object lockb = new Object();
}

class  DeadLockTest
{
    public static void main(String[] args) 
    {
        Thread t1 = new Thread(new Test(true));
        Thread t2 = new Thread(new Test(false));
        t1.start();
        t2.start();
    }
}





本文出自 “点滴积累” 博客,请务必保留此出处http://tianxingzhe.blog.51cto.com/3390077/1699960

目录
相关文章
|
2月前
|
Java 开发者 C++
Java多线程同步大揭秘:synchronized与Lock的终极对决!
Java多线程同步大揭秘:synchronized与Lock的终极对决!
60 5
|
4月前
|
Java 开发者 C++
Java多线程同步大揭秘:synchronized与Lock的终极对决!
【6月更文挑战第20天】在Java多线程编程中,`synchronized`和`Lock`是两种关键的同步机制。`synchronized`作为内置关键字提供基础同步,简单但可能不够灵活;而`Lock`接口自Java 5引入,提供更复杂的控制和优化性能的选项。在低竞争场景下,`synchronized`性能可能更好,但在高并发或需要精细控制时,`Lock`(如`ReentrantLock`)更具优势。选择哪种取决于具体需求和场景,理解两者机制至关重要。
44 1
|
4月前
|
Java 测试技术
Java多线程同步实战:从synchronized到Lock的进化之路!
【6月更文挑战第20天】Java多线程同步始于`synchronized`关键字,保证单线程访问共享资源,但为应对复杂场景,`Lock`接口(如`ReentrantLock`)提供了更细粒度控制,包括可重入、公平性及中断等待。通过实战比较两者在高并发下的性能,了解其应用场景。不断学习如`Semaphore`等工具并实践,能提升多线程编程能力。从同步起点到专家之路,每次实战都是进步的阶梯。
48 0
|
4月前
|
Java 程序员
从0到1,手把手教你玩转Java多线程同步!
【6月更文挑战第20天】从0到1学Java多线程同步:理解线程同步关键,掌握`synchronized`用法,探索`Lock`接口,实战演练并进阶学习锁升级、`Condition`及死锁预防,成为多线程大师!
25 0
|
2月前
|
安全 Java 开发者
Java多线程同步:synchronized与Lock的“爱恨情仇”!
Java多线程同步:synchronized与Lock的“爱恨情仇”!
82 5
|
2月前
|
Java 程序员
从0到1,手把手教你玩转Java多线程同步!
从0到1,手把手教你玩转Java多线程同步!
24 3
|
2月前
|
Java 测试技术
Java多线程同步实战:从synchronized到Lock的进化之路!
Java多线程同步实战:从synchronized到Lock的进化之路!
89 1
|
2月前
|
存储 Java 开发者
HashMap线程安全问题大揭秘:ConcurrentHashMap、自定义同步,一文让你彻底解锁!
【8月更文挑战第24天】HashMap是Java集合框架中不可或缺的一部分,以其高效的键值对存储和快速访问能力广受开发者欢迎。本文深入探讨了HashMap在JDK 1.8后的底层结构——数组+链表+红黑树混合模式,这种设计既利用了数组的快速定位优势,又通过链表和红黑树有效解决了哈希冲突问题。数组作为基石,每个元素包含一个Node节点,通过next指针形成链表;当链表长度过长时,采用红黑树进行优化,显著提升性能。此外,还介绍了HashMap的扩容机制,确保即使在数据量增大时也能保持高效运作。通过示例代码展示如何使用HashMap进行基本操作,帮助理解其实现原理及应用场景。
40 1
|
2月前
|
Java 调度 开发者
Java并发编程:解锁多线程同步的奥秘
在Java的世界里,并发编程是提升应用性能的关键所在。本文将深入浅出地探讨Java中的并发工具和同步机制,带领读者从基础到进阶,逐步掌握多线程编程的核心技巧。通过实例演示,我们将一起探索如何在多线程环境下保持数据的一致性,以及如何有效利用线程池来管理资源。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开新的视野,让你对Java并发编程有更深入的理解和应用。
|
3月前
|
安全 Java 程序员
Java 并发编程:解锁多线程同步的奥秘
【7月更文挑战第30天】在Java的世界里,并发编程是一块充满挑战的领域。它如同一位严苛的导师,要求我们深入理解其运作机制,才能驾驭多线程的力量。本文将带你探索Java并发编程的核心概念,包括线程同步与通信、锁机制、以及并发集合的使用。我们将通过实例代码,揭示如何在多线程环境中保持数据的一致性和完整性,确保你的应用程序既高效又稳定。准备好了吗?让我们一同踏上这段解锁Java并发之谜的旅程。
37 5