NumPy 数组使用

简介: NumPy 数组使用# 来源:NumPy Essentials ch3向量化import numpy as np # NumPy 数组的运算是向量化的# 数组和标量运算是每个元素和标量运算x = np.

NumPy 数组使用

# 来源:NumPy Essentials ch3

向量化

import numpy as np 

# NumPy 数组的运算是向量化的

# 数组和标量运算是每个元素和标量运算
x = np.array([1, 2, 3, 4]) 
x + 1 
# array([2, 3, 4, 5]) 

# 数组和数组运算是逐元素运算
y = np.array([-1, 2, 3, 0]) 
x * y 
array([-1,  4,  9,  0]) 

# 需要计算内积的时候
# 使用np.dot
np.dot(x, y) 
# 12

# 所有逻辑运算符也是向量化的
x == y 
# array([False,  True,  True, False], dtype=bool) 

# NumPy 使用 C 语言编译出来的代码来处理数据
# 所以很快
x = np.arange(10000)
'''
%timeit x + 1
100000 loops, best of 3: 12.6 µs per loop 
'''
y = range(10000)
'''
%timeit [i + 1 for i in y] 
1000 loops, best of 3: 458 µs per loop 
'''

x = np.arange(1,9) 
x.dtype 
# dtype('int32') 

# 整数和浮点的 div 运算生成浮点
x = x / 10.0 
x 
# array([ 0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8]) 
x.dtype 
# dtype('float64') 

# 整数和浮点的 idiv 运算
# 1.10 版之前生成整数
# 之后会报错
y = np.arange(1,9) 
y /= 10.0 
y 
# array([0, 0, 0, 0, 0, 0, 0, 0]) 
y.dtype 
# dtype('int32')

通用函数(ufunc)


# 通用函数在数组的每个元素上调用
# 也可以处理标量
x = np.arange(5,10) 
np.square(x) 
# array([25, 36, 49, 64, 81]) 

# 也有二元的通用函数
y = np.ones(5) * 10 
np.mod(y, x) 
# array([ 0.,  4.,  3.,  2.,  1.]) 

# 一些函数名称类似
# 但是效果不一样
# np.minimum 逐元素计算较小值
# 属于通用函数
# np.fmin 与之相同
np.minimum(x, 7)
# array([5, 6, 7, 7, 7]) 

# np.min 计算整个数组的最小值
# 属于聚集函数
np.min(x) 
# 5

z = np.repeat(x, 3).reshape(5, 3) 
z 
'''
array([[5, 5, 5], 
       [6, 6, 6], 
       [7, 7, 7], 
       [8, 8, 8], 
       [9, 9, 9]]) 
'''
# 聚集函数一般会有 axis 参数
# 指定沿着哪个轴
# 如果不写,则是全数组聚集
np.median(z) 
# 7.0 

# 轴 0 是沿 arr[0], arr[1] 方向的轴
# 对于二维数据来说,就是列方向
np.median(z, axis = 0) 
# array([ 7.,  7.,  7.]) 

# 轴 1 是沿 arr[0][0], arr[0][1] 方向的轴
# 对于二维数据来说,就是行方向
np.median(z, axis = 1) 
# array([ 5.,  6.,  7.,  8.,  9.]) 

# accumulate 计算累计
# accum[i] = arr[0] op ... op arr[i]
np.add.accumulate(x) 
array([ 5, 11, 18, 26, 35]) 


# outer 计算外积
# 返回矩阵,每个元素是 a[i] op b[j]
np.multiply.outer(x, x) 
'''
array([[25, 30, 35, 40, 45], 
       [30, 36, 42, 48, 54], 
       [35, 42, 49, 56, 63], 
       [40, 48, 56, 64, 72], 
       [45, 54, 63, 72, 81]]) 
'''

广播和调整形状

# 最简单的就是通过 shape 属性调整形状
# 形状乘起来要等于元素个数
# -1 表示由 NumPy 来计算,这里计算结果是 4
x = np.arange(24) 
x.shape = 2, 3, -1 
x 
'''
array([[[ 0,  1,  2,  3], 
        [ 4,  5,  6,  7], 
        [ 8,  9, 10, 11]], 
       [[12, 13, 14, 15], 
        [16, 17, 18, 19], 
        [20, 21, 22, 23]]]) 
'''

# 也可以使用 reshape 生成指定形状的视图
# 或者 resize 生成指定形状的副本
# 而不会改动 x
y = x.reshape((2, 3, -1))

# flatten 创造展开后的副本
# ravel 创造展开后的视图
x = np.arange(1000000) 
x.shape = 100, 100, 100 
'''
%timeit x.flatten() 
1000 loops, best of 3: 1.14 ms per loop 
%timeit x.ravel() 
1000000 loops, best of 3: 330 ns per loop 
'''

向量堆叠

x = np.arange (0, 10, 2) 
y = np.arange (0, -5, -1)

# vstack 是竖直堆叠,也就是沿倒数第二个轴堆叠
# 一维数组只有一个轴,所以会新增一个维度
# 结果会创建一维数组的数组
np.vstack([x, y]) 
'''
array([[ 0,  2,  4,  6,  8], 
       [ 0, -1, -2, -3, -4]]) 
'''

# hstack 是数值堆叠,也就是沿倒数第一个轴堆叠
# 对于一维数组是首尾拼接
np.hstack([x, y])
# array([ 0,  2,  4,  6,  8,  0, -1, -2, -3, -4]) 

# dstack 是纵深堆叠
# 所以结果是三维数组
np.dstack([x, y]) 
'''
array([[[ 0,  0], 
        [ 2, -1], 
        [ 4, -2], 
        [ 6, -3], 
        [ 8, -4]]]) 
'''

布尔索引


# 布尔数组可通过数组的逻辑运算来获取
x = np.array([1,3,-1, 5, 7, -1])
mask = (x < 0) 
mask 
# array([False, False,  True, False, False,  True], dtype=bool) 

# NumPy 可接受布尔数组作为索引
# 布尔数组的形状需要与原数组一致
# True 元素表示取该值,False 表示不取
# 结果是一维数组
x [mask] = 0
x
# array([1, 3, 0, 5, 7, 0]) 

# 布尔数组可以使用 sum 方法来统计 True 的个数
# 原理是调用 sum 时会将 False 转换成 0
# True 转换成 1
x = np.random.random(50)
(x > .5).sum()
# 20 

助手函数


# lookfor 用于搜索包含指定单词的函数
np.lookfor('resize')
'''
Search results for 'resize' 
--------------------------- 
numpy.ma.resize 
    Return a new masked array with the specified size and shape. 
numpy.chararray.resize 
    Change shape and size of array in-place. 
numpy.oldnumeric.ma.resize 
    The original array's total size can be any size. 
numpy.resize 
    Return a new array with the specified shape. 
'''

# 每个函数或方法的文档字符串中
# 都包含它的 API 文档
print np.arange.__doc__
'''
arange([start,] stop[, step,], dtype=None)

    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval ``[start, stop)``
    (in other words, the interval including `start` but excluding `stop`).
    For integer arguments the function is equivalent to the Python built-in
    `range <http://docs.python.org/lib/built-in-funcs.html>`_ function,
    but returns an ndarray rather than a list.

...
'''
相关文章
|
1月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
291 1
|
索引 Python
NumPy 教程 之 Numpy 数组操作 28
NumPy 提供多种数组操作功能,包括修改形状、翻转、连接和分割等。本教程重点介绍元素的添加与删除,如使用 `resize`、`append`、`insert` 和 `delete` 函数。其中 `numpy.insert` 可在指定索引前插入值,支持标量或数组插入。示例展示了不同情况下 `insert` 的使用方法,包括不指定轴时的数组扁平化插入,以及沿特定轴进行广播插入。
130 2
|
数据处理 索引 Python
NumPy 数组操作:和普通操作相较,到底蕴含着怎样令人费解的独特魅力?
【8月更文挑战第19天】NumPy是Python科学计算核心库,提供高效数组操作。不同于Python列表直接列举创建,NumPy用`np.array()`创建数组。两者都支持索引和切片,但NumPy性能更优。数学运算方面,NumPy支持简洁的向量化操作,如`my_array * 2`,无需循环。NumPy还简化了数组形状变换,如使用`reshape()`方法。此外,NumPy数组要求元素类型一致,提高了内存使用效率和计算速度。这些特点使NumPy在科学计算和数据分析中不可或缺。
168 0
|
11月前
|
计算机视觉 Python
PIL图像转换为Numpy数组:技术与案例详解
本文介绍了如何将PIL图像转换为Numpy数组,以便利用Numpy进行数学运算和向量化操作。首先简要介绍了PIL和Numpy的基本功能,然后详细说明了转换过程,包括导入库、打开图像文件、使用`np.array()`或`np.asarray()`函数进行转换,并通过打印数组形状验证转换结果。最后,通过裁剪、旋转和缩放等案例展示了转换后的应用,以及如何将Numpy数组转换回PIL图像。此外,还介绍了处理base64编码图像的完整流程。
426 4
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
395 10
|
Python
Numpy学习笔记(四):如何将数组升维、降维和去重
本文介绍了如何使用NumPy库对数组进行升维、降维和去重操作。
241 1
|
Python
使用 NumPy 进行数组操作的示例
使用 NumPy 进行数组操作的示例
216 2
|
Python
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
NumPy库中的`np.concatenate`和`np.append`函数,它们分别用于沿指定轴拼接多个数组以及在指定轴上追加数组元素。
656 0
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
|
索引 Python
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧1
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
432 4
|
Python
numpy | 插入不定长字符数组测试OK
本文介绍了如何在numpy中创建和操作不定长字符数组,包括插入和截断操作的测试。
132 7

热门文章

最新文章

下一篇
oss云网关配置