Unity拥抱AI:用机器学习训练NPC、机器人、模拟自动驾驶

简介:

在李世石和柯洁战败后,人类在棋类竞技场已经难与AI争锋。很多人会说,作为非职业棋类选手,不在乎下不下的赢棋。想一想,要是以后打游戏也赢不了AI了……

这件事情已经发生了,且还在加速。雷锋网曾报道,2017年9月,Open AI的DotA 2游戏人工智能在1V1中击败了人类玩家。

同年9月,全球最大的3D游戏引擎Unity宣布发布Unity Machine Learning Agents(ML-Agents),一款提供给游戏开发者的开源AI工具包。Unity这一开源工具包是Unity将机器学习应用在游戏的成果,AI已经附能各行各业,那么在游戏行业,会带来哪些有趣的成果?

Unity拥抱AI:用机器学习训练NPC、机器人、模拟自动驾驶

5月11-13日,Unite Beijing 2018在国家会议中心召开。Unity AI与机器学习副总裁Danny Lange分享了ML-Agents的新进展,雷锋网也来到了现场。

ML-Agents助力游戏开发

Lange介绍到,机器学习对于游戏开发来说很重要,能够让游戏开发过程更加简单,让游戏变得更加有吸引力,开发者可以不用每一个方案都编程,游戏与玩家的互动变化可以让系统自己学习。就像人从环境当中感知,并作出反应一样。ML-Agents可以以相同的方式来训练这些系统。

Lange给大家演示了一个Demo,未来主义的赛车游戏,Demo中左边是人类,然后右边是机器学习的Agent。一开始的时候,Agent转弯不好,容易装车,但是它慢慢学习人类的操作,大概25分钟的训练之后,你可以看到可能还是有点不稳,但是不会再撞车了。经过不断的训练,Agent能编程非常好的选手。

那么,具体游戏场景中,可以有以下应用:机器学习可以应用在几个方面。第一个是创建NPC,有多种行为的NPC, NPC已经学习了很多人类行为,这会让与人类的交互更为自然。第二个是游戏本身。AI能够为优化玩家的乐趣进行学习,而不是为开发者的乐趣而进行优化。对于玩家来说,会有更多个性化和定制化的东西。第三个是一个完全不同的领域,就是我们用机器学习在游戏发布前测试游戏。确保使用agent代替人类玩家进行游戏时,你能够了解游戏是否能顺利进行。

此外,在游戏中如果人类玩家数量很少,就可以用agent代替人类玩家。最后一个方面是match making。使用机器学习可以将合适的玩家找出来,匹配在一起玩游戏。可以让机器学习系统了解如何优化游戏时间、为玩家配对以及如何最大化利用游戏时间。

Unity拥抱AI:用机器学习训练NPC、机器人、模拟自动驾驶

(由Unity创建的一个网球游戏RL/ML模拟训练环境示例)

ML-Agents训练自动驾驶、机器人

从两年多前,Unity就开始酝酿转型,从一家纯引擎提供商转向互联网+云增值服务。Danny Lange是Unity发力AI领域的背后推手,在加入Unity之前,Lange曾担任Uber机器学习负责人,在更早之前,Lange还负责过亚马逊和微软的机器学习产品研发。

除了游戏以外,ML-Agents在自动驾驶和机器人领域还有很多应用场景。Lange介绍到,自动驾驶是ML-Agents很大的应用领域,因为这样就不需要像Uber那样在真实的路上驾驶,用机器学习模拟就可以避免在真实道路测试带来的事故。另外一个领域是机器人,用增强型学习,你可以在虚拟环境去训练机器人,可以很快地完成几十万或者几百万次训练。训练好的模型可以放到真实的机器人上面应用。

此外,ML-Agents也可以应用在建筑设计中,比如要如何合理设计通道、人流,用机器学习的方式去模拟建筑内的路线图。


原文发布时间为:2018-05-22

本文作者:李诗

本文来自云栖社区合作伙伴“雷锋网”,了解相关信息可以关注“雷锋网”。

相关文章
|
3月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
726 109
|
3月前
|
人工智能 机器人 Serverless
安诺机器人 X 阿里云函数计算 AI 咖啡印花解决方案
当云计算遇见具身智能,AI咖啡开启零售新体验。用户通过手机生成个性化图像,云端AI快速渲染,机器人精准复刻于咖啡奶泡之上,90秒内完成一杯可饮用的艺术品。该方案融合阿里云FunctionAI生图能力与安诺机器人高精度执行系统,实现AIGC创意到实体呈现的闭环,为线下零售提供低成本、高互动、易部署的智能化升级路径,已在商场、机场、展馆等场景落地应用。
安诺机器人 X 阿里云函数计算 AI 咖啡印花解决方案
|
3月前
|
机器学习/深度学习 人工智能 机器人
AI Compass前沿速览:Nano Bananary、MCP Registry、通义DeepResearch 、VoxCPM、InternVLA·M1具身机器人
AI Compass前沿速览:Nano Bananary、MCP Registry、通义DeepResearch 、VoxCPM、InternVLA·M1具身机器人
|
3月前
|
人工智能 Java 机器人
基于Spring AI Alibaba + Spring Boot + Ollama搭建本地AI对话机器人API
Spring AI Alibaba集成Ollama,基于Java构建本地大模型应用,支持流式对话、knife4j接口可视化,实现高隐私、免API密钥的离线AI服务。
2474 1
基于Spring AI Alibaba + Spring Boot + Ollama搭建本地AI对话机器人API
|
3月前
|
存储 人工智能 监控
LangGraph实战:从零构建智能交易机器人,让多个AI智能体像投资团队一样协作
如今的量化交易已远超传统技术指标,迈向多智能体协作的新时代。本文介绍了一个基于 **LangGraph** 构建的多智能体交易系统,模拟真实投资机构的运作流程:数据分析师收集市场情报,研究员展开多空辩论,交易员制定策略,风险团队多角度评估,最终由投资组合经理做出决策。系统具备记忆学习能力,通过每次交易积累经验,持续优化决策质量。
668 8
LangGraph实战:从零构建智能交易机器人,让多个AI智能体像投资团队一样协作
|
5月前
|
机器学习/深度学习 人工智能 监控
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
本系列文章深入讲解了从Seq2Seq、RNN到Transformer,再到GPT模型的关键技术原理与实现细节,帮助读者全面掌握Transformer及其在NLP中的应用。同时,通过一个房价预测的完整案例,介绍了算法工程师如何利用数据训练模型并解决实际问题,涵盖需求分析、数据收集、模型训练与部署等全流程。文章适合初学者和开发者学习AI基础与实战技能。
696 25
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
|
3月前
|
存储 人工智能 机器人
科技云报到:西湖大学、智元机器人都选它,存储成为AI下一个风口
科技云报到:西湖大学、智元机器人都选它,存储成为AI下一个风口
124 1
|
4月前
|
存储 人工智能 机器人
别再只做聊天机器人:AI 应用商业闭环的工程落地指南,免费体验中
本文介绍了如何通过阿里云百炼平台创建一个星座运势分析AI智能体,并集成支付宝MCP服务实现支付闭环。解决AI产品无法直接变现的问题,完成“服务-支付-交易”全流程闭环,帮助开发者快速实现商业化。
|
5月前
|
人工智能 弹性计算 运维
通勤路上修故障?钉钉机器人+ OOS AI 助手实现 7×24 小时运维自由
通过钉钉机器人配置阿里云 OOS AI 助手,您可以直接在钉钉群内发送文字指令,实现免登录、跨设备、秒级响应的阿里云运维操作。
|
5月前
|
人工智能 数据可视化 安全
NekroAgent - 一体式跨平台多人AI智能聊天机器人框架
NekroAgent 是一个基于 AI 的智能聊天机器人框架,起源于 QQBot 插件,现发展为独立、功能强大的平台。它支持多平台适配、代码生成与安全沙盒执行、可视化管理界面,并具备高度扩展性与多模态交互能力,适用于 Linux、Windows、MacOS 系统部署。
231 0
NekroAgent - 一体式跨平台多人AI智能聊天机器人框架