直角停车不是梦,东京车展出现搭载AI技术的球形轮胎

简介:

这款轮胎使无人驾驶汽车不仅在软件系统方面做到智能化,也在轮胎等硬件设备上也做到智能化。

在10月27日开幕的东京车展上,美国轮胎公司Goodyear公布了搭载了人工智能技术的球形轮胎试验品。该轮胎主要满足自动驾驶和共享功能的需求设计。

直角停车不是梦,东京车展出现拥有AI技术的球形轮胎试验品

此款轮胎外观为60厘米左右的球形,为了达到车身与轮胎的固定,车体不能采用传统转轴固定,必须采用磁悬浮技术,使车体漂浮在四个车轮之上。因此,轮胎前进可以忽略车头方向,使得直角停车成为可能。由于车胎的表面积增加了4倍左右,所以和普通轮胎相比,此轮胎更为耐用。

这款轮胎的出现对于无人驾驶汽车可谓如虎添翼,使无人驾驶汽车不仅在软件系统方面做到智能化,也在轮胎等硬件设备上也做到智能化。通过轮胎上的AI技术能够判断路面和轮胎表面的情况,再根据地面的干湿程度对轮胎纹理进行变形,可以出色应对滑湿路面,或者向驾驶员传达使用磨损较少部分行驶的提示,以及及时报告请更换轮胎等。

无人驾驶汽车作为未来汽车发展的一个方向,有巨大的发展潜力。人工智能轮胎的出现可谓提前抢占了未来无人驾驶汽车的轮胎市场。


原文发布时间: 2017-10-30 17:45
本文作者: Lotusun
本文来自云栖社区合作伙伴镁客网,了解相关信息可以关注镁客网。
相关文章
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术深度解析:生成式AI的革命性突破与产业应用实战
蒋星熠Jaxonic,AI技术探索者,深耕生成式AI领域。本文系统解析AIGC核心技术,涵盖Transformer架构、主流模型对比与实战应用,分享文本生成、图像创作等场景的实践经验,展望技术趋势与产业前景,助力开发者构建完整认知体系,共赴AI原生时代。
22 1
|
5天前
|
机器学习/深度学习 人工智能 资源调度
嵌入式AI领域关键技术的理论基础
本内容系统讲解嵌入式AI领域关键技术的数学理论基础,涵盖神经网络量化、剪枝、知识蒸馏与架构搜索的核心原理。深入探讨量化中的信息论与优化方法、稀疏网络的数学建模、蒸馏中的信息传递机制,以及神经架构搜索的优化框架,为在资源受限环境下实现高效AI推理提供理论支撑。
34 5
|
5天前
|
存储 机器学习/深度学习 人工智能
​​解锁AI检索的7大Embedding技术:从稀疏到多向量,一文掌握!​
本文系统解析七种主流文本嵌入技术,包括 Sparse、Dense、Quantized、Binary、Matryoshka 和 Multi-Vector 方法,结合适用场景提供实用选型建议,助你高效构建文本检索系统。
57 0
|
10天前
|
人工智能 安全 数据库
AI编程:普通人难以逾越的技术高墙-优雅草卓伊凡
AI编程:普通人难以逾越的技术高墙-优雅草卓伊凡
103 15
|
11天前
|
人工智能 JSON 前端开发
Agentic AI崛起:九大核心技术定义未来人机交互模式​
本文系统梳理AI智能体架构设计的九大核心技术,涵盖智能体基础、多智能体协作、知识增强、模型优化、工具调用、协议标准化及人机交互等关键领域,助力构建高效、智能、协同的AI应用体系。建议点赞收藏,持续关注AI架构前沿技术。
195 1
|
11天前
|
数据采集 Web App开发 人工智能
如何让AI“看懂”网页?拆解 Browser-Use 的三大核心技术模块
Browser-Use 是一种基于大语言模型(LLM)的浏览器自动化技术,通过融合视觉理解、DOM解析和动作预测等模块,实现对复杂网页任务的自主操作。它突破了传统固定选择器和流程编排的限制,具备任务规划与语义理解能力,可完成注册、比价、填报等多步骤操作。其核心功能包括视觉与HTML融合解析、多标签管理、元素追踪、自定义动作、自纠错机制,并支持任意LLM模型。Browser-Use标志着浏览器自动化从“规则驱动”向“认知驱动”的跃迁,大幅降低维护成本,提升复杂任务的处理效率与适应性。
246 20
|
人工智能 安全 API
AI战略丨MCP 生态发展:从技术标准到商业机遇的全景解析
在 AI 时代,成功不再仅仅取决于技术的先进性,更取决于生态的构建能力和标准的制定权。
|
20天前
|
人工智能 自然语言处理 机器人
AI电话客服的服务质量提升路径:关键技术与典型应用场景解析
AI电话客服正从基础语音工具进化为能处理复杂业务的智能体。本文深入解析服务质量提升的关键技术路径与行业应用,涵盖语音识别、情感分析、多轮对话等核心技术,以及智能外呼、自动质检、客户数据分析等典型场景,助力零售、电商、制造、互联网等行业构建高效、有温度的智能客服体系,推动人机协同服务升级。
90 1
|
21天前
|
人工智能
AI推理方法演进:Chain-of-Thought、Tree-of-Thought与Graph-of-Thought技术对比分析
大语言模型推理能力不断提升,从早期的规模扩展转向方法创新。2022年Google提出Chain-of-Thought(CoT),通过展示推理过程显著提升模型表现。随后,Tree-of-Thought(ToT)和Graph-of-Thought(GoT)相继出现,推理结构由线性链条演进为树状分支,最终发展为支持多节点连接的图网络。CoT成本低但易错传,ToT支持多路径探索与回溯,GoT则实现非线性、多维推理,适合复杂任务。三者在计算成本与推理能力上形成递进关系,推动AI推理向更接近人类思维的方向发展。
118 4

热门文章

最新文章