Python单元测试框架之pytest---如何执行测试用例

简介:

介绍                                                                     

  pytest是一个成熟的全功能的Python测试工具,可以帮助你写出更好的程序。

适合从简单的单元到复杂的功能测试

  • l 模块化parametrizeable装置(在2.3,持续改进)
  • l 参数化测试函数(用例)
  • l 标记测试功能与属性
  • l Skip和xfail:处理不成功的测试用例(在2.4改进)
  • l 通过xdist插件分发测试到多个CPU
  • l 不断地重新运行失败的测试
  • l 灵活约定的Python测试发现

Home Page: http://pytest.org

 

 

安装                                                                    

>pip install -U pytest   # 通过pip安装

>py.test --version        # 查看pytest版本

 This is pytest version 2.7.2, imported from C:\Python27\lib\site-packages\pytest.pyc

 

 

简单的测试                                                           

  

  让我们创建第一个文件,对个简单的功能进行测试。

复制代码
#coding=utf-8

# 功能
def func(x):
    return x + 1

# 测试用例
def test_answer():
    assert func(3) == 5
复制代码

 切换到测试文件所在的目录,通过“py.test”命令运行测试。

>py.test 

执行结果如下图:

 

===================================================================

在一个测试类中创建多个测试用例:

复制代码
#coding=utf-8

class TestClass:

    def test_one(self):
        x = "this"
        assert "h" in x

    def test_two(self):
        x = "hello"
        assert x == "hi"
复制代码

运行测试:

>py.test -q test_class.py

-q  quiet。表示在安静的模式输出报告诉。加不加这个参有什么区别呢? 读者可以对比一下两次输出的日志。其实,就是少了一些pytest的版本信息。

 

===================================================================

 

Python代码中调用pytest

pytest中同样提供了main() 来函数来执行测试用例。

pytest/

├── test_sample.py

├── test_class.py

└── test_main.py

此目录为我们练习的目录,打开test_mian.py

复制代码
import pytest

def test_main():
    assert 5 != 5

if __name__ == '__main__':
    pytest.main()
复制代码

 直接运行该程序,sublime 中按Ctrl+B 运行。结果如下:

复制代码
============================= test session starts =============================
platform win32 -- Python 2.7.10 -- py-1.4.30 -- pytest-2.7.2
rootdir: D:\pyse\pytest, inifile: 
collected 4 items

test_class.py .F
test_main.py F
test_sample.py F

================================== FAILURES ===================================
_____________________________ TestClass.test_two ______________________________

self = <test_class.TestClass instance at 0x000000000304F548>

    def test_two(self):
            x = "hello"
>           assert x == "hi"
E           assert 'hello' == 'hi'
E             - hello
E             + hi

test_class.py:11: AssertionError
__________________________________ test_main __________________________________

    def test_main():
>       assert 5 != 5
E    assert 5 != 5

test_main.py:4: AssertionError
_________________________________ test_answer _________________________________

    def test_answer():
>       assert func(3) == 5
E    assert 4 == 5
E     +  where 4 = func(3)

test_sample.py:9: AssertionError
===================== 3 failed, 1 passed in 0.03 seconds ======================
[Finished in 0.3s]
复制代码

 

  从执行结果看到,main() 默认执行了当前文件所在的目录下的所有测试文件。

  那么,如果我们只想运行某个测试文件呢?可以向main()中添加参数,就像在cmd命令提示符下面一样:

复制代码
#coding=utf-8
import pytest

def test_main():
    assert 5 != 5

if __name__ == '__main__':
    pytest.main("-q test_main.py")   # 指定测试文件
复制代码

 运行结果:

复制代码
F
================================== FAILURES ===================================
__________________________________ test_main __________________________________

    def test_main():
>       assert 5 != 5
E    assert 5 != 5

test_main.py:4: AssertionError
1 failed in 0.01 seconds
复制代码

 

那如果我想运行某个目录下的测试用例呢?指定测试目录即可。

复制代码
#coding=utf-8
import pytest

def test_main():
    assert 5 != 5

if __name__ == '__main__':
    pytest.main("d:/pyse/pytest/")  # 指定测试目录
复制代码

 

 

 创建运行测试脚本                                                  

 

  有时候我们的测试用例文件分散在不同的层级目录下,通过命令行的方式运行测试显示不太方便,如何编写一个运行所有测试用例的脚本呢? pytest可以自动帮我们生成这样的脚本。

>py.test --genscript=runtests.py

打开生成的测runtests.py文件:

复制代码
sources = """
eNrsve2S3EiSIDa3+jhtnvZ293Ra6SSdCZMUF0AzK1nk9OzM1nV2L4dNznKnm6TxY6dX1XVJVAJV
halMIAkgWVU3O2d6Ar3CPYQeQn/1QjKTf8UnAplZ7O6ZPTNxpiszgQiPCA8PD3cPD/f/449+9/5H
yds/W99M58v6fDqfl1XZzefv/9nbvxuPxxE8Oy+r8+jRy2dREq+bOt8siqaNo6zKo3hRV+1mRb/h
a1UsuiKPPpRZdFncXNVN3qYRABmN3v/R23+OLbRd/v6/ePOf/tmPflSu1nXTRe1NOxotllnbRq+7
PKlPfwMw0qNR
……
"""

import sys
import base64
import zlib

class DictImporter(object):
    def __init__(self, sources):
        self.sources = sources

    def find_module(self, fullname, path=None):
        if fullname == "argparse" and sys.version_info >= (2,7):
            # we were generated with <python2.7 (which pulls in argparse)
            # but we are running now on a stdlib which has it, so use that.
            return None
        if fullname in self.sources:
            return self
        if fullname + '.__init__' in self.sources:
            return self
        return None

    def load_module(self, fullname):
        # print "load_module:",  fullname
        from types import ModuleType
        try:
            s = self.sources[fullname]
            is_pkg = False
        except KeyError:
            s = self.sources[fullname + '.__init__']
            is_pkg = True

        co = compile(s, fullname, 'exec')
        module = sys.modules.setdefault(fullname, ModuleType(fullname))
        module.__file__ = "%s/%s" % (__file__, fullname)
        module.__loader__ = self
        if is_pkg:
            module.__path__ = [fullname]

        do_exec(co, module.__dict__) # noqa
        return sys.modules[fullname]

    def get_source(self, name):
        res = self.sources.get(name)
        if res is None:
            res = self.sources.get(name + '.__init__')
        return res

if __name__ == "__main__":
    if sys.version_info >= (3, 0):
        exec("def do_exec(co, loc): exec(co, loc)\n")
        import pickle
        sources = sources.encode("ascii") # ensure bytes
        sources = pickle.loads(zlib.decompress(base64.decodebytes(sources)))
    else:
        import cPickle as pickle
        exec("def do_exec(co, loc): exec co in loc\n")
        sources = pickle.loads(zlib.decompress(base64.decodestring(sources)))

    importer = DictImporter(sources)
    sys.meta_path.insert(0, importer)

    entry = "import pytest; raise SystemExit(pytest.cmdline.main())"
    do_exec(entry, locals()) # noqa
复制代码

 好吧!其实, 我也不理解这段代码的含义,但是执行它的可运行测试用例了。

pytest/

├── test_case/

│   ├── test_sample.py

│   ├── test_class.py

│   ├── __init__.py

│   └── test_case2/

│          ├── test_main.py

│          ├── test_time.py

│          └── __init__.py

└── runtests.py

 

执行runtest.py文件。

>python runtest.py

当然,你也可以打开runtests.py 文件运行它。

 

===================================================================

最后,pytest是如果识别测试用例的呢?它默认使用检查以test_ *.py 或*_test.py命名的文件名,在文件内部查找以test_打头的方法或函数,并执行它们。

pytest还有许多需要讨论的地方,做为这个系列的第一节,先介绍到这里。

目录
相关文章
|
3天前
|
设计模式 前端开发 JavaScript
自动化测试框架设计原则与最佳实践####
本文深入探讨了构建高效、可维护的自动化测试框架的核心原则与策略,旨在为软件测试工程师提供一套系统性的方法指南。通过分析常见误区,结合行业案例,阐述了如何根据项目特性定制自动化策略,优化测试流程,提升测试覆盖率与执行效率。 ####
21 6
|
4天前
|
人工智能 前端开发 测试技术
探索软件测试中的自动化框架选择与优化策略####
本文深入剖析了当前主流的自动化测试框架,通过对比分析各自的优势、局限性及适用场景,为读者提供了一套系统性的选择与优化指南。文章首先概述了自动化测试的重要性及其在软件开发生命周期中的位置,接着逐一探讨了Selenium、Appium、Cypress等热门框架的特点,并通过实际案例展示了如何根据项目需求灵活选用与配置框架,以提升测试效率和质量。最后,文章还分享了若干最佳实践和未来趋势预测,旨在帮助测试工程师更好地应对复杂多变的测试环境。 ####
18 4
|
9天前
|
机器学习/深度学习 前端开发 测试技术
探索软件测试中的自动化测试框架选择与优化策略####
本文深入探讨了在当前软件开发生命周期中,自动化测试框架的选择对于提升测试效率、保障产品质量的重要性。通过分析市场上主流的自动化测试工具,如Selenium、Appium、Jest等,结合具体项目需求,提出了一套系统化的选型与优化策略。文章首先概述了自动化测试的基本原理及其在现代软件开发中的角色变迁,随后详细对比了各主流框架的功能特点、适用场景及优缺点,最后基于实际案例,阐述了如何根据项目特性量身定制自动化测试解决方案,并给出了持续集成/持续部署(CI/CD)环境下的最佳实践建议。 --- ####
|
10天前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
45 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
9天前
|
测试技术 API Android开发
探索软件测试中的自动化框架选择与实践####
本文深入探讨了软件测试领域内,面对众多自动化测试框架时,如何依据项目特性和团队需求做出明智选择,并分享了实践中的有效策略与技巧。不同于传统摘要的概述方式,本文将直接以一段实践指南的形式,简述在选择自动化测试框架时应考虑的核心要素及推荐路径,旨在为读者提供即时可用的参考。 ####
|
3月前
|
Java 测试技术 开发者
在软件开发中,测试至关重要,尤以单元测试和集成测试为然
在软件开发中,测试至关重要,尤以单元测试和集成测试为然。单元测试聚焦于Java中的类或方法等最小单元,确保其独立功能正确无误,及早发现问题。集成测试则着眼于模块间的交互,验证整体协作效能。为实现高效测试,需编写可测性强的代码,并选用JUnit等合适框架。同时,合理规划测试场景与利用Spring等工具也必不可少。遵循最佳实践,可提升测试质量,保障Java应用稳健前行。
49 1
|
13天前
|
测试技术 开发者 UED
探索软件测试的深度:从单元测试到自动化测试
【10月更文挑战第30天】在软件开发的世界中,测试是确保产品质量和用户满意度的关键步骤。本文将深入探讨软件测试的不同层次,从基本的单元测试到复杂的自动化测试,揭示它们如何共同构建一个坚实的质量保证体系。我们将通过实际代码示例,展示如何在开发过程中实施有效的测试策略,以确保软件的稳定性和可靠性。无论你是新手还是经验丰富的开发者,这篇文章都将为你提供宝贵的见解和实用技巧。
|
3月前
|
JSON Dubbo 测试技术
单元测试问题之增加JCode5插件生成的测试代码的可信度如何解决
单元测试问题之增加JCode5插件生成的测试代码的可信度如何解决
57 2
单元测试问题之增加JCode5插件生成的测试代码的可信度如何解决
|
2月前
|
IDE 测试技术 持续交付
Python自动化测试与单元测试框架:提升代码质量与效率
【9月更文挑战第3天】随着软件行业的迅速发展,代码质量和开发效率变得至关重要。本文探讨了Python在自动化及单元测试中的应用,介绍了Selenium、Appium、pytest等自动化测试框架,以及Python标准库中的unittest单元测试框架。通过详细阐述各框架的特点与使用方法,本文旨在帮助开发者掌握编写高效测试用例的技巧,提升代码质量与开发效率。同时,文章还提出了制定测试计划、持续集成与测试等实践建议,助力项目成功。
85 5
|
3月前
|
JSON 测试技术 数据格式
单元测试问题之使用JCode5插件生成测试类如何解决
单元测试问题之使用JCode5插件生成测试类如何解决
129 3