15 篇最新 AI 论文来袭!NLP、CV...人人有份 | 本周值得读

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介:

Accelerating Neural Transformer via an Average Attention Network
@bzhang 推荐
Neural Machine Translation

本文主要研究机器翻译领域最先进的 Transformer 系统(Attention is all you need)。针对该系统解码效率底下的问题,本文在模型设计层面提出平均注意网络,在不损失翻译质量的情况下,本文所提模型有效提升解码速率 4~7 倍。

本文在 WMT 六个语言对 12 个翻译方向上进行了实验论证,结果一致地表明本文所提模型可以有效地提升解码速率,并生成高质量译文。

论文链接
https://www.paperweekly.site/papers/1929
代码链接
https://github.com/bzhangXMU/transformer-aan

Cross Domain Regularization for Neural Ranking Models Using Adversarial Learning
@Ttssxuan 推荐
Adversarial Learning

本文来自 SIGIR ’18。深度表征学习网络可以自动地学习数据集中数据的表示,但是这也存在局限性,其被局限到被采样的数据中,而对未见过的数据域泛化能力有限。本文借助对抗网络对表征学习网络进行正则化,其分类器向表征网络提供负反馈,使其不会陷入特定数据域的表征学习,从而提升网络对的泛化能力。

论文链接
https://www.paperweekly.site/papers/1923

Hierarchical Neural Story Generation
@llamazing 推荐
Text Generation

本文来自 Facebook AI Research,论文使用层次话结构做故事生成,解决长依赖性问题。少信息->多信息,decoder self-attention + model fusion,decoder 时 word 从 word prob top10 中随机选取,可减少生成重复文本。

论文链接
https://www.paperweekly.site/papers/1932

DOTA: A Large-scale Dataset for Object Detection in Aerial Images
@paperweekly 推荐
Object Detection

本文提出了一个数据集,包含 2806 张遥感图像(大小约 4000*4000),188,282 个 instances,分为 15 个类别。

论文链接
http://www.paperweekly.site/papers/1907

代码链接
https://github.com/jessemelpolio/Faster_RCNN_for_DOTA
数据集链接
https://captain-whu.github.io/DOTA/dataset.html

Spiking Deep Residual Network
@chlr1995 推荐
Spiking Neural Network

脉冲神经网络(SNN)在生物理论中备受关注。理论上脉冲神经网络应该与人工神经网络的性能是相同的,但是训练深层的 SNN 是非常困难的。本文提出了一种脉冲版本的 ResNet,并且在 MNIST、CIFAR 等数据集上实验得到了 state of the art的结果。

论文链接
https://www.paperweekly.site/papers/1916

Deep Active Learning for Named Entity Recognition
@cmdjeu 推荐
Named Entity Recognition

本文是亚马逊和 UT Austin 发表于 ICLR 2018 的工作,论文在命名实体识别的方法上引入主动学习,在少量数据集即可达到较优结果,感觉也可以扩展到其他自然语言方向。

论文链接
https://www.paperweekly.site/papers/1919

An Universal Image Attractiveness Ranking Framework
@Ttssxuan 推荐
Image Ranking

本文来自微软,本文结合 deep convolutional neural network 和 rank net,设计对成对的图片的 Attractiveness 排序模型。 模型首先使用深度卷积得到网络图片的 attractiveness score 的均值和方差,然后使用设计好的标准,对两个图片之间的关系进行预测。

论文把模型排序结果和搜索引擎排序结果比较,质量得到较明显提升

论文链接
http://www.paperweekly.site/papers/1908

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec
@xavierzw 推荐
Network Embedding


本文来自清华和微软。论文创造性地将 DeepWalk,LINE,Node2Vec 等 network embedding 的方法,通过 Matrix Factorization 框架来统一表示。

进一步地基于 Matrix Factorization 的思路,作者提出 NetMF 方法,实验证明优于 DeepWalk,LINE 的算法。此外作者也给出了相关 Upper Bound 的严格数学证明。

论文链接
https://www.paperweekly.site/papers/1924

代码链接
https://github.com/xptree/NetMF

Global Encoding for Abstractive Summarization
@llamazing 推荐
Abstractive Summarization

本文是北京大学发表于 ACL 2018 的工作,论文提出用 Global Encoding 解决句内重复和输入输出语义无关问题,Convolutional Gated Unit + Self Attention。

论文链接
https://www.paperweekly.site/papers/1930

Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-grained Image Recognition
@RTM 推荐
Image Recognition

本文是 CVPR 2017 的一篇 Oral 文章,主要工作集中在细粒度图片识别。文中提出了一种级联的网络结构,通过 anattention proposal sub-network 实现粗粒度图片到细粒度图片的获取和识别,文中充分利用了卷积神经网络的注意力机制,在原始图片的基础上裁剪、放大识别图片中目标。

论文链接
https://www.paperweekly.site/papers/1904

An Attention Mechanism for Answer Selection Using a Combined Global and Local View
@IndexFziQ 推荐
Answer Selection

本文来自 Digitalgenius,提出用 attention 根据不同的输入粒度计算相似度,将答案的特定部分中的局部信息与整个问题的全局表示相结合。Answer selection 的关键就是文本相似度的计算,文章有可以学习的地方。

最后在 InsuranceQA 上评估系统,实验目的是看注意力机制关注的哪些部分文本,并探究其在不同参数设置下的表现,结果比 IBM(Improved Representation Learning for Question Answer Matching)提出的 Attention LSTM 稍微提高了一些。

论文链接
https://www.paperweekly.site/papers/1918

Deep & Cross Network for Ad Click Predictions
@c0de 推荐
Ad Click Predictions

本文来自斯坦福大学和 Google,论文利用深度学习自动高效得学习高阶交叉特征,免去特征工程。

论文链接
https://www.paperweekly.site/papers/1898

Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks
@liria 推荐
Convolutional Neural Network

本文来自斯坦福吴恩达组,该论文主要做的事情建立了从单导联的心电信号到 14 种心脏疾病的模型,模型是一个 34 层的 CNN 网络。文章定义了 12 种心脏异常状态和窦性心率及噪声,共 14 种。模型主要是 34 层的残差 CNN 将 ECG 序列映射到 label 序列。

本文声称自己的模型超过了心电科的医生,不同于传统的提取各种统计指标再训练模型,是一种直接从 sequnce 训练的模型,确实能够减少很多工作量。

论文链接
https://www.paperweekly.site/papers/1921

Efficient Natural Language Response Suggestion for Smart Reply
@mev 推荐
Natural Language Understanding

本文介绍了 Gmail Smart Reply 的一个检索式实现,这个结果应该是实际产品化了的,有一定的参考价值。文章中使用了大量的方式来降低模型的 latency,并且使最终结果保持在较高精度。

比较有意思的是文中有一个实验,使用句子的 ngram embedding sum 来表示句子,然后通过一个 RNN 重新生成原句,在几十万词的数据集下得到了 ppl 为 1.2 的结果,证明了仅仅使用 ngram 就可以捕捉到足够的句子序列信息了。

原文发布时间为:2018-05-16
本文作者:让你更懂AI
本文来自云栖社区合作伙伴“PaperWeekly”,了解相关信息可以关注“PaperWeekly”。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(NLP)是AI的重要分支,旨在让计算机理解人类语言
自然语言处理(NLP)是AI的重要分支,旨在让计算机理解人类语言。本文探讨了深度学习在NLP中的应用,包括其基本任务、优势、常见模型及具体案例,如文本分类、情感分析等,并讨论了Python的相关工具和库,以及面临的挑战和未来趋势。
94 1
|
2月前
|
机器学习/深度学习 人工智能 数据可视化
何恺明CV课程 | AI大咖说
麻省理工学院(MIT)电气工程与计算机科学系(EECS)副教授何恺明开设了两门精彩课程:“Advance in Computer Vision”和“Deep Generative Models”。何恺明是计算机视觉和深度学习领域的杰出科学家,曾提出深度残差网络(ResNet)等重要成果。这两门课程不仅涵盖了最新的研究前沿,还由何恺明亲自授课,内容涉及卷积神经网络、生成对抗网络、变分自编码器等,是学习计算机视觉和生成模型的宝贵资源。
78 8
|
3月前
|
人工智能 自动驾驶 搜索推荐
【通义】AI视界|苹果AI本周正式上线,将引入四大功能
本文由【通义】自动生成,涵盖苹果AI上线、特斯拉被华尔街重新评估、谷歌开发控制计算机的AI、Meta与路透社合作及Waymo获56亿美元融资等科技动态。点击链接或扫描二维码获取更多信息。
|
3月前
|
人工智能 自然语言处理
【NLP自然语言处理】NLP中的常用预训练AI模型
【NLP自然语言处理】NLP中的常用预训练AI模型
|
4月前
|
人工智能 开发者
Nature曝惊人内幕:论文被天价卖出喂AI!出版商狂赚上亿,作者0收入
【9月更文挑战第8天】《自然》杂志近日揭露,学术出版商如泰勒·弗朗西斯与微软签订千万美元合约,及威利获高额报酬,将论文提供给科技巨头训练AI模型,引发学界对版权与收益分配的热议。此现象反映了AI对高质量数据的渴求,但亦使研究人员担忧成果被无偿商用,且可能影响学术独立性。尽管AI训练使用学术资源能提升模型科学性,助力科研进展,但如何保障作者权益及维持学术纯粹性仍是亟待解决的问题。https://www.nature.com/articles/d41586-024-02599-9
81 4
|
5月前
|
机器学习/深度学习 自然语言处理 PyTorch
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--6 提分方案
在讯飞英文学术论文分类挑战赛中的提分技巧和实现方法,包括数据增强、投票融合、伪标签等策略,以及加快模型训练的技巧,如混合精度训练和使用AdamW优化器等。
49 0
|
5月前
|
数据采集 机器学习/深度学习 存储
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–5 Bert 方案
在讯飞英文学术论文分类挑战赛中使用BERT模型进行文本分类的方法,包括数据预处理、模型微调技巧、长文本处理策略以及通过不同模型和数据增强技术提高准确率的过程。
47 0
|
5月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–4 机器学习LGB 方案
在讯飞英文学术论文分类挑战赛中使用LightGBM模型进行文本分类的方案,包括数据预处理、特征提取、模型训练及多折交叉验证等步骤,并提供了相关的代码实现。
60 0
|
5月前
|
数据采集 自然语言处理 机器学习/深度学习
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–3 TextCNN Fasttext 方案
讯飞英文学术论文分类挑战赛中使用TextCNN和FastText模型进行文本分类的方案,包括数据预处理、模型训练和对抗训练等步骤,并分享了模型调优的经验。
48 0
|
5月前
|
机器学习/深度学习 自然语言处理 数据挖掘
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--2 数据分析
讯飞英文学术论文分类挑战赛数据集的分析,包括数据加载、缺失值检查、标签分布、文本长度统计等内容,并总结了数据的基本情况。
26 0