IBM上线“深度学习即服务”项目,帮助开发者缩短AI训练时间

简介:

IBM正在帮助开发者进一步降低神经网络的训练难度。

今天,IBM宣布面向人工智能开发者推出全新的“深度学习即服务”项目,简称“DLaaS”。

据了解,该项目的每一个云计算处理单元都是遵循简单易用的原则而设置的,且开发者也不必对基础设置进行管理。基于该项目服务,开发者无需去购买售价和维护成本高昂的硬件,便能够使用TensorFlow、PyTorch、Caffe等流行框架来训练神经网络。

IBM上线“深度学习即服务”项目,帮助开发者缩短AI训练时间

在一份白皮书中,IBM研究人员提到:“开发者可以根据一组支持的深度学习框架、神经网络模型、训练数据、成本约束等条件进行挑选,然后DLaaS服务会帮助完成其余的事情,为他们提供交互式、可迭代的训练体验。”

这就意味着,在使用服务的时候,开发者只需要做三个步骤:准备数据、上传数据、下载结果。具体来讲,在准备好数据之后,开发者只需将其上传到DLaaS进行训练,最后在训练结果出来之后将其下载下来即可。

“DLaaS是一个以实验为中心的模型训练环境,意味着用户无需烦心于陷入计划和管理的泥沼中。相反的是,整个训练的生命周期是自动管理的,且结果可以实时、或稍后再重新查看。每一场训练都是自动启动、监控和完成的,节省了用户宝贵的时间和金钱,因为他们只需为自己使用的那部分资源而付费。”IBM在一篇博文中写到。当前,DLaaS 正运行在IBM的人工智能平台Watson上。

以往,人们对一个神经系统进行训练可能需要几天甚至几周的时间,而IBM正通过DLaaS项目来帮助开发者进一步降低门槛,在“训练神经网络”上节省更多的时间。


原文发布时间: 2018-03-20 15:16
本文作者: 韩璐
本文来自云栖社区合作伙伴镁客网,了解相关信息可以关注镁客网。
相关文章
|
16天前
|
机器学习/深度学习 人工智能 算法
AI 基础知识从 0.6 到 0.7—— 彻底拆解深度神经网络训练的五大核心步骤
本文以一个经典的PyTorch手写数字识别代码示例为引子,深入剖析了简洁代码背后隐藏的深度神经网络(DNN)训练全过程。
303 38
|
3月前
|
机器学习/深度学习 数据采集 人工智能
基于生成式物理引擎的AI模型训练方法论
本文探讨了基于生成式物理引擎的AI模型训练方法论,旨在解决传统数据采集高成本、低效率的问题。生成式物理引擎结合物理建模与生成模型(如GAN、Diffusion),可模拟现实世界的力学规律,生成高质量、多样化的虚拟数据。文章介绍了其关键技术,包括神经网络物理建模、扩散模型场景生成及强化学习应用,并分析了其在机器人学习、数据增强和通用智能体训练中的实践价值。未来,随着可微物理引擎、跨模态生成等技术发展,生成式物理引擎将助力AI从静态监督学习迈向动态交互式世界建模,推动通用人工智能的实现。
215 57
基于生成式物理引擎的AI模型训练方法论
|
2月前
|
存储 关系型数据库 数据库
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
本文通过一个 Agentic RAG 应用的完整构建流程,展示了如何借助 RDS Supabase 快速搭建具备知识处理与智能决策能力的 AI 应用,展示从数据准备到应用部署的全流程,相较于传统开发模式效率大幅提升。
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
|
2月前
|
人工智能 负载均衡 安全
云上AI推理平台全掌握 (3):服务接入与全球调度
阿里云人工智能平台 PAI 平台推出的全球化的服务接入矩阵,为 LLM 服务量身打造了专业且灵活的服务接入方案,正重新定义 AI 服务的高可用接入标准——从单地域 VPC 安全隔离到跨洲际毫秒级调度,让客户的推理服务在任何网络环境下都能实现「接入即最优」。
|
4月前
|
人工智能 自然语言处理 文字识别
阿里云 AI 搜索开放平台新增:服务开发能力
阿里云 AI 搜索开放平台新发布:服务开发能,可通过集成 dsw 能力并新增 notebook 功能,进一步提升用户编排效率。
215 0
|
2月前
|
机器学习/深度学习 人工智能 数据可视化
基于YOLOv8的AI虫子种类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8与PyQt5开发,实现虫子种类识别,支持图片、视频、摄像头等多种输入方式,具备完整训练与部署流程,开箱即用,附带数据集与源码,适合快速搭建高精度昆虫识别系统。
基于YOLOv8的AI虫子种类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
4月前
|
数据采集 存储 人工智能
智创 AI 新视界 -- 优化 AI 模型训练效率的策略与技巧(16 - 1)
本文深度聚焦 AI 模型训练效率优化,全面涵盖数据预处理(清洗、归一化、增强)、模型架构(轻量级应用、剪枝与量化)、训练算法与超参数调优(自适应学习率、优化算法)等核心维度。结合自动驾驶、动物图像识别、语音识别等多领域实际案例,佐以丰富且详细的代码示例,深度剖析技术原理与应用技巧,为 AI 从业者呈上极具专业性、可操作性与参考价值的技术宝典,助力高效优化模型训练效率与性能提升。
智创 AI 新视界 -- 优化 AI 模型训练效率的策略与技巧(16 - 1)
|
2月前
|
机器学习/深度学习 人工智能 API
AI-Compass LLM训练框架生态:整合ms-swift、Unsloth、Megatron-LM等核心框架,涵盖全参数/PEFT训练与分布式优化
AI-Compass LLM训练框架生态:整合ms-swift、Unsloth、Megatron-LM等核心框架,涵盖全参数/PEFT训练与分布式优化

热门文章

最新文章