【玩转数据系列六】文本分析算法实现新闻自动分类

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 新闻分类是文本挖掘领域较为常见的场景。目前很多媒体或是内容生产商对于新闻这种文本的分类常常采用人肉打标的方式,消耗了大量的人力资源。本文尝试通过智能的文本挖掘算法对于新闻文本进行分类。无需任何人肉打标,完全由机器智能化实现。

(本文数据为虚构,仅供实验。本实验拟在介绍文本类组件,具体有意实现效果的提升请联系我们,我们提供完整解决方案和商业合作。)

产品地址:https://data.aliyun.com/product/learn?spm=a21gt.99266.416540.102.OwEfx2

一、背景

新闻分类是文本挖掘领域较为常见的场景。目前很多媒体或是内容生产商对于新闻这种文本的分类常常采用人肉打标的方式,消耗了大量的人力资源。本文尝试通过智能的文本挖掘算法对于新闻文本进行分类。无需任何人肉打标,完全由机器智能化实现。

本文通过PLDA算法挖掘文章的主题,通过主题权重的聚类,实现新闻自动分类。包括了分词、词型转换、停用词过滤、主题挖掘、聚类等流程。

二、数据集介绍

具体字段如下:

字段名 含义 类型 描述
category 新闻类型 string 体育、女性、社会、军事、科技等
title 标题 string 新闻标题
content 内容 string 新闻内容

数据截图:

三、数据探索流程

首先,实验流程图:

实验可以大致分为五个模块,分别是增加序号列、停用词过滤、分词及词频统计、文本主题挖掘、结果分析和评估。

1.增加序号列

本文的数据源输入是以单个新闻为单元,需要增加ID列来作为每篇新闻的唯一标识,方便下面的算法进行计算。

2.分词及词频统计

这两步都是文本挖掘领域最常规的做法,首先利用分词控件对于content字段,也就是新闻内容进行分词。去除过滤词之后(过滤词一般是标点符号及助语),对于词频进行统计。
如下图:

3.停用词过滤

停用词过滤功能用于过滤输入的停用词词库,一般过滤标点符号以及对于文章影响较少的助语等。

4.文本主题挖掘

使用PLDA文本挖掘组件需要先将文本转换成三元形式,append_id是每篇新闻的唯一标识,key_value字段中冒号前面的数字表示的是单词抽象成的数字标识,冒号后面是对应的单词出现的频率。三元组组件生成结果如下:

在上一步完成了文本转数字的过程,下一步数据进入PLDA算法。PLDA算法又叫主题模型,算法可以定位代表每篇文章的主题的词语。本次试验设置了50个主题,PLDA有六个输出桩,第五个输出桩输出结果显示的是每篇文章对应的每个主题的概率。如图:

5.结果分析和评估

上一步把文章从主题的维度表示成了一个向量。接下来就可以通过向量的距离实现聚类,从而实现文章分类。我们这里可以简单看一下分类的结果。查看K均值聚类组件的结果,cluster_index表示的是每一类的名称。找到第0类,一共有docid为115,292,248,166四篇文章。

通过过滤与映射组件查询115,292,248,166四篇文章。结果如下:

效果并不十分理想,将一篇财经、一篇科技的新闻跟两个体育类新闻分到了一起。主要原因是细节的调优没有做,也没有做特征工程,同时数据量太小也是一个主要的因素。本文只是一个简单的案例,商业合作可以私下联系我们,我们在文本方面我们有较完善的解决方案。

四、其它

作者微信公众号(与作者讨论):

参与讨论:云栖社区公众号

免费体验:阿里云数加机器学习平台

联系我们: aohai.lb@alibaba-inc.com

往期文章:

【玩转数据系列一】人口普查统计案例

【玩转数据系列二】机器学习应用没那么难,这次教你玩心脏病预测

【玩转数据系列三】利用图算法实现金融行业风控

【玩转数据系列四】听说啤酒和尿布很配?本期教你用协同过滤做推荐

【玩转数据系列五】农业贷款发放预测

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
打赏
0
1
1
3
82420
分享
相关文章
联邦学习的未来:深入剖析FedAvg算法与数据不均衡的解决之道
随着数据隐私和数据安全法规的不断加强,传统的集中式机器学习方法受到越来越多的限制。为了在分布式数据场景中高效训练模型,同时保护用户数据隐私,联邦学习(Federated Learning, FL)应运而生。它允许多个参与方在本地数据上训练模型,并通过共享模型参数而非原始数据,实现协同建模。
利用SVM(支持向量机)分类算法对鸢尾花数据集进行分类
本文介绍了如何使用支持向量机(SVM)算法对鸢尾花数据集进行分类。作者通过Python的sklearn库加载数据,并利用pandas、matplotlib等工具进行数据分析和可视化。
209 70
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
基于NURBS曲线的数据拟合算法matlab仿真
本程序基于NURBS曲线实现数据拟合,适用于计算机图形学、CAD/CAM等领域。通过控制顶点和权重,精确表示复杂形状,特别适合真实对象建模和数据点光滑拟合。程序在MATLAB2022A上运行,展示了T1至T7的测试结果,无水印输出。核心算法采用梯度下降等优化技术调整参数,最小化误差函数E,确保迭代收敛,提供高质量的拟合效果。
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
63 12
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
26 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
【狂热算法篇】解锁数据潜能:探秘前沿 LIS 算法
【狂热算法篇】解锁数据潜能:探秘前沿 LIS 算法
数据分片算法
【10月更文挑战第25天】不同的数据分片算法适用于不同的应用场景和数据特点,在实际应用中,需要根据具体的业务需求、数据分布情况、系统性能要求等因素综合考虑,选择合适的数据分片算法,以实现数据的高效存储、查询和处理。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等