ETL for Oracle to Greenplum (bulk) - Pentaho Data Integrator (PDI, kettle)

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介:

背景

使用pentaho,结合gpfdist, gpload,Greenplum作为目标库,ETL批量写入GPDB。


      正文

      Greenplum Load

      Description

The Greenplum Load step wraps the Greenplum GPLoad data loading utility. The GPLoad data loading utility is used for massively parallel data loading using Greenplum's external table parallel loading feature. Typical deployment scenarios for performing parallel loading to Greenplum include:

      Single ETL Server, Multiple NICs

pic

This deployment highlights a scenario where you have a single ETL server with two Network Interface Cards (NICs )and you want to perform parallel data loading across the NICs. A simple transformation then to load data from the input file (located on the ETL Server) in parallel would look like the following:

pic

The Greenplum load step would be configured with a local hostname definition for each NIC on the server. When executed, PDI will generate the necessary YAML control file:

VERSION: 1.0.0.1  
DATABASE: foodmart  
USER: gpadmin  
HOST: 192.168.1.42  
PORT: 5432  
GPLOAD:  
   INPUT:  
    - SOURCE:  
        LOCAL_HOSTNAME:  
          - etl1-1  
          - etl1-2  
        FILE: ['load0.dat']  
    - FORMAT: TEXT  
    - DELIMITER: ','  
    - QUOTE: ''  
    - HEADER: FALSE  
    - ERROR_LIMIT: 50  
    - ERROR_TABLE: err_customer  
   OUTPUT:  
    - TABLE: samples_customer  
    - MODE: insert  

and the data file. gpload is executed using the following command:

/user/local/greenplum-db/bin/gpload -f control10.dat  

      Multiple ETL Servers

pic

This scenario depicts where there are several physical ETL servers and the PDI Transformation is to be executed in clustered mode. To setup this configuration, perform the following steps:

1、Setup a cluster of three PDI servers, two slaves and one master

2、Build a simple transformation reading from the input file (which needs to reside on the master node of your PDI cluster) and a Greenplum Load step

3、Right-click on the Greenplum load step, select 'Clusterings...' and select the cluster you defined in step 1

You should now have a transformation similar to:

pic

When executed, the PDI master will evenly distribute rows from the input file to each of the PDI slave servers which will in turn call gpload to load their portion of the data.

For information on how to install and configure GPload and GPfdist, please refer to the Greenplum Administration Guide.

      Options

Option Description
Step name Name of the step. Note: This name has to be unique in a single transformation.
Connection The database connection(JDBC) to which you will be loading data. Note that you must set $PGPASSWORD in the environment where gpload executes, the password is not transfered to the gpload process from kettle.
Target schema The name of the Schema for the table to write data to.
Target table The name of the target table to write data to.
Load method Defines whether to actually call gpload (Automatic) after generating the configuration and data files or stop execution after the files are created (Manual) so that gpload could be run manually at a later time.
Erase cfg/dat files after use Configure whether or not you want the control and data files generated to be removed after execution of the transformation.

      Fields Tab

Option Description
Load action Defines the type of load you wish to perform:

INSERT - loads data into the target table.

UPDATE - Updates the UPDATE_COLUMNS of the target table where the rows have MATCH_COLUMNS attribute values equal to those of the input data, and the optional UPDATE_CONDITION is true.

MERGE - Inserts new rows and updates existing ones.

New rows are identified when the MATCH_COLUMNS value in the source data does not have a corresponding value in the target table.
If the rows do exist then the UPDATE_COLUMNS are updated.

If there are multiple new MATCH_COLUMNS values that are the same, only one new row for that value will be inserted (use UPDATE_CONDITION to filter out the rows you want to discard). MERGE is not supported on tables with a random distribution policy.
Get Field Click this button to retrieve a list of potential fields to load based on the input fields coming into this step.
Edit Mapping Click this button to open the mapping editor allowing you to change the mapping between fields from the source data file and the corresponding field the data will be written to in the target table.
Table Field Name of the column in the "Target Table" that maps to a "Stream field"
Stream Field Name of a field input stream. The data in this field will be loaded into the database column specified by "Table Field".
Date Mask The date mask to use of the "Stream Field" is a date type.
Match Boolean. Setting to "Y" indicates that the column is to be used in the "match criteria" of the join condition of the update.

The attribute value in the specified target column(s) must be equal to that of the corresponding source data column(s) in order for the row to be updated in the target table.

If an UPDATE or MERGE "Load Action" is to be performed then at least on column must specified as the "match criteria".
Update Boolean. If set to ""Y then the column will be updated for the rows that meet the "match criteria".
Update condition Optional. Specifies a Boolean condition, similar to what you would declare in a SQL WHERE clause, that must be met in order for a row in the target table to be updated or inserted, in the case of a MERGE.

      Local Host Names Tab

Option Description
Port Optional. Specifies the specific port number that the gpfdist file distribution program should use. If not specified and Hostname(s) are specified then the default is an available port between 8000 and 9000.
Hostname Optional. Specifies the host name or IP address of the local machine on which gpload is running. If the host is using several NIC cards then the host name or IP address of each NIC card can be specified.

      GP Configuration tab

Option Description
Path to the gpload The path to where the GPload utility is installed.
Control file Defines the name of the GPload control file that will be generated.

Note: when executing the Greenplum Load step in a clustered configuration (multiple ETL servers), it is recommended that you use variables to create unique file names for each copy of the step. For example:

control${Internal.Step.CopyNr}.cfg
Error table Defines the target table where error records will be written to. If the table exists it will not be truncated before the load. If the table does not exist it will be created.
Maximum errors Defines the maximum number of errors to allow before the load operation is aborted. Erros are logged to the specified "Error Table".
Log file Specify the location for where GPload will write log information. This information is what would be displayed in a terminal or window if gpload was executed at the command line.
Data file Defines the name of the Data file(s) that will be written for subsequent loading in the target tables by GPload.

Note: when executing the Greenplum Load step in a clustered configuration (multiple ETL servers), it is recommended that you use variables to create unique file names for each copy of the step. For example:

load${Internal.Step.CopyNr}.dat
Delimiter Delimits the fields written to "Data file". This delimiter is then specified in the generated control file.
Encoding Specify the character set encoding of the data file. Supported encodings are:

BIG5, EUC_CN, EUC_JP, EUC_KR, EUC_TW, GB18030, GBK, ISO-8859-1, ISO_8859_5, ISO_8859_6, ISO_8859_7, ISO_8859_8, JOHAB, KOI8, LATIN1, LATIN2, LATIN3, LATIN4, LATIN5, LATIN6, LATIN7, LATIN8, LATIN9, LATIN10, MULE_INTERNAL, SJIS, SQL_ASCII, UHC, UTF8, WIN866, WIN874, WIN1250, WIN1251, WIN1252, WIN1253, WIN1254, WIN1255, WIN1256, WIN1257, WIN1258

      Example

The attached transformation, GPLoad-localhost-variables, demonstrates how environmental variables can be used in the Greenplum Load step to defined local hosts.

      Metadata Injection Support (7.x and later)

All fields of this step support metadata injection. You can use this step with ETL Metadata Injection to pass metadata to your transformation at runtime.

      参考

https://help.pentaho.com/Documentation/8.0/Products/Data_Integration/Transformation_Step_Reference#replacements

目录
相关文章
|
6月前
|
SQL Oracle 关系型数据库
关系型数据库Oracle Data Guard
【7月更文挑战第11天】
48 1
|
6月前
|
SQL 监控 Oracle
关系型数据库Oracle 的Data Guard:
【7月更文挑战第7天】
71 3
|
6月前
|
Oracle 关系型数据库 数据库
|
Oracle 关系型数据库
Oracle 中data与timstamp互转
Oracle 中data与timstamp互转
|
存储 Oracle Java
[亲测可用]hibernate调用Oracle存储过程|Spring Data JPA调用Oracle存储过程方法
[亲测可用]hibernate调用Oracle存储过程|Spring Data JPA调用Oracle存储过程方法
|
SQL 存储 Oracle
kettle从oracle到mysql数据迁移
kettle从oracle到mysql数据迁移
1340 0
|
运维 Oracle 关系型数据库
【大数据开发运维解决方案】Oracle Data Redaction数据加密测试
最近有个做Java开发的网友问我,怎么在Oracle进行数据加密呢?我给他推荐了Data Redaction。Oracle Database 12c中加入了Data Redaction这个新的安全特性。当然在11g的Database Advanced Security Administrator’s Guide官方文档中就介绍了。
【大数据开发运维解决方案】Oracle Data Redaction数据加密测试
|
SQL 关系型数据库 计算机视觉
Oracle bulk 示例
Oracle有2个引擎来执行PL/SQL blocks 和 subprograms。那么在执行的时候,PL/SQL 引擎把DML 语句发送给SQL 引擎,然后由SQL 引擎执行,执行完毕后,SQL 引擎把结果集在发送给PL/SQL 引擎。
826 0
|
3月前
|
存储 Oracle 关系型数据库
Oracle数据库的应用场景有哪些?
【10月更文挑战第15天】Oracle数据库的应用场景有哪些?
230 64
|
30天前
|
存储 Oracle 关系型数据库
数据库数据恢复—ORACLE常见故障的数据恢复方案
Oracle数据库常见故障表现: 1、ORACLE数据库无法启动或无法正常工作。 2、ORACLE ASM存储破坏。 3、ORACLE数据文件丢失。 4、ORACLE数据文件部分损坏。 5、ORACLE DUMP文件损坏。
94 11

推荐镜像

更多
下一篇
开通oss服务