python中的SQLite数据库

简介: python中的SQLite数据库 Python SQLITE数据库是一款非常小巧的嵌入式开源数据库软件,也就是说没有独立的维护进程,所有的维护都来自于程序本身。它使用一个文件存储整个数据库,操作十分方便。

python中的SQLite数据库

Python SQLITE数据库是一款非常小巧的嵌入式开源数据库软件,也就是说没有独立的维护进程,所有的维护都来自于程序本身。它使用一个文件存储整个数据库,操作十分方便。它的最大优点是使用方便,功能相比于其它大型数据库来说,确实有些差距。但是性能表现上,SQLITE并不逊色。麻雀虽小,五脏俱全, sqlite 实现了多数 sql-92 的标准,比如说 transaction 、 trigger 和复杂的查询等。

 

下面让我们一步步走进Python中的SQLite吧。

一,Python SQLITE数据库导入模块:

import sqlite3

二,创建数据库/打开数据库:

cx = sqlite3.connect("E:/test.db")

其实我们不需要显式的创建一个sqlite数据库,在调用connect函数的时候,指定库名称,如果指定的数据库存在就直接打开这个数据库,如果不存在就新创建一个再打开。这一点应用很好理解。

三,数据库连接对象:

打开数据库时返回的对象cx就是一个数据库连接对象,它可以有以下操作:

commit()–事务提交
rollback()–事务回滚
close()–关闭一个数据库连接
cursor()–创建一个游标

四,Python SQLITE数据库游标的使用:

游标提供了一种对从表中检索出的数据进行操作的灵活手段,就本质而言,游标实际上是一种能从包括多条数据记录的结果集中每次提取一条记录的机制。游标总是与一条SQL 选择语句相关联。因为游标由结果集(可以是零条、一条或由相关的选择语句检索出的多条记录)和结果集中指向特定记录的游标位置组成。当决定对结果集进行处理时,必须声明一个指向该结果集的游标。如果曾经用 C 语言写过对文件进行处理的程序,那么游标就像您打开文件所得到的文件句柄一样,只要文件打开成功, 该文件句柄就可代表该文件。对于游标而言,其道理是相同的。可见游标能够实现按与传统程序读取平面文件类似的方式处理来自基础表的结果集,从而把表中数据以平面文件的形式呈现给程序。
我们知道关系数据库管理系统实质是面向集合的,在Sqlite中并没有一种描述表中单一记录的表达形式,除非使用where 子句来限制只有一条记录被选中。因此我们必须借助于游标来进行面向单条记录的数据处理。由此可见,游标允许应用程序对查询语句select 返回的行结果集中每一行进行相同或不同的操作,而不是一次对整个结果集进行同一种操作;它还提供对基于游标位置而对表中数据进行删除或更新的能力;正是游标把作为面向集合的数据库管理系统和面向行的程序设计两者联系起来,使两个数据处理方式能够进行沟通。

下面着重阐述cursor游标的使用。其实,所有sql语句的执行都要在游标对象下进行。

首先,定义一个游标

cu = cx.cursor()
这样定义了一个游标。游标对象有以下的操作:

execute()–执行sql语句
executemany–执行多条sql语句
close()–关闭游标
fetchone()–从结果中取一条记录,并将游标指向下一条记录
fetchmany()–从结果中取多条记录
scroll()–游标滚动

下面就使用Python SQLITE数据库中游标对我们上面建立的数据库作一些操作吧:

1,建表:
cu.execute('create table catalog (id integer primary key,pid integer,name varchar(10) UNIQUE)') 上面语句创建了一个叫catalog的表,它有一个主键id,一个pid,和一个name,name是不可以重复的。

2,插入数据:
cu.execute("insert into catalog values(0, 0, 'name1')")  cu.execute("insert into catalog values(1, 0, 'hello')") 简单的插入两行数据,不过需要提醒的是,只有提交了之后,才能生效.我们使用数据库连接对象cx来进行提交commit和回滚rollback操作.
cx.commit()

3,查询:
cu.execute("select * from catalog") 要提取查询到的数据,使用游标的fetch***函数,如:
print cu.fetchall() 返回结果如下:
[(0, 0, u'name1'), (1, 0, u'hello')] 如果我们使用cu.fetchone(),则首先返回列表中的第一项,再次使用,则返回第二项,依次下去.

4,修改:
cu.execute("update catalog set name='name2' where id = 0") 

cx.commit() 注意,修改数据以后提交

5,删除:
cu.execute("delete from catalog where id = 1")  cx.commit() 以上简单的操作反应的Python SQLITE数据库操作的基本要点,这里点到为止.然后,SQLite的强大,并不仅限于此,其对SQL高级特性的支持及其小巧灵活的特点,使得SQLite在众多领域受到开发者的青睐.

举例:import sqlite3


#其实我们不需要显式的创建一个sqlite数据库,在调用connect函数的时候,指定库名称,
#如果指定的数据库存在就直接打开这个数据库,
#如果不存在就新创建一个再打开。这一点应用很好理解。
con = sqlite3.connect('d:/mydatabase.db3')


#创建一个游标
cur = con.cursor()
#建表
cur.execute('CREATE TABLE foo (o_id INTEGER PRIMARY KEY, fruit VARCHAR(20), veges VARCHAR(30))')


con.commit()
#插入数据
cur.execute('INSERT INTO foo (o_id, fruit, veges) VALUES(NULL, "apple", "broccoli")')


con.commit()
print(cur.lastrowid)


#查询
cur.execute('SELECT * FROM foo')
print(cur.fetchall())

结果:1
[(1, 'apple', 'broccoli')]
原文地址http://www.bieryun.com/3569.html
相关文章
|
2月前
|
关系型数据库 MySQL 数据库连接
python脚本:连接数据库,检查直播流是否可用
【10月更文挑战第13天】本脚本使用 `mysql-connector-python` 连接MySQL数据库,检查 `live_streams` 表中每个直播流URL的可用性。通过 `requests` 库发送HTTP请求,输出每个URL的检查结果。需安装 `mysql-connector-python` 和 `requests` 库,并配置数据库连接参数。
137 68
|
29天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
198 15
|
2月前
|
弹性计算 数据管理 数据库
从零开始构建员工管理系统:Python与SQLite3的完美结合
本文介绍如何使用Python和Tkinter构建一个图形界面的员工管理系统(EMS)。系统包括数据库设计、核心功能实现和图形用户界面创建。主要功能有查询、添加、删除员工信息及统计员工数量。通过本文,你将学会如何结合SQLite数据库进行数据管理,并使用Tkinter创建友好的用户界面。
85 2
从零开始构建员工管理系统:Python与SQLite3的完美结合
|
2月前
|
存储 SQL 数据库
数据库知识:了解SQLite或其他移动端数据库的使用
【10月更文挑战第22天】本文介绍了SQLite在移动应用开发中的应用,包括其优势、如何在Android中集成SQLite、基本的数据库操作(增删改查)、并发访问和事务处理等。通过示例代码,帮助开发者更好地理解和使用SQLite。此外,还提到了其他移动端数据库的选择。
54 8
|
3月前
|
关系型数据库 MySQL 数据处理
探索Python中的异步编程:从asyncio到异步数据库操作
在这个快节奏的技术世界里,效率和性能是关键。本文将带你深入Python的异步编程世界,从基础的asyncio库开始,逐步探索到异步数据库操作的高级应用。我们将一起揭开异步编程的神秘面纱,探索它如何帮助我们提升应用程序的性能和响应速度。
|
3月前
|
Web App开发 SQL 数据库
使用 Python 解析火狐浏览器的 SQLite3 数据库
本文介绍如何使用 Python 解析火狐浏览器的 SQLite3 数据库,包括书签、历史记录和下载记录等。通过安装 Python 和 SQLite3,定位火狐数据库文件路径,编写 Python 脚本连接数据库并执行 SQL 查询,最终输出最近访问的网站历史记录。
52 4
|
3月前
|
SQL 机器学习/深度学习 数据采集
SQL与Python集成:数据库操作无缝衔接22.bijius.com
自动化数据预处理:使用Python库(如Pandas)自动清洗、转换和准备数据,为机器学习模型提供高质量输入。 实时数据处理:集成Apache Kafka或Amazon Kinesis等流处理系统,实现实时数据更新和分析。
|
3月前
|
SQL 机器学习/深度学习 数据库
SQL与Python集成:数据库操作无缝衔接
在开始之前,确保你已经安装了必要的Python库,如`sqlite3`(用于SQLite数据库)或`psycopg2`(用于PostgreSQL数据库)。这些库提供了Python与SQL数据库之间的接口。
|
3月前
|
存储 缓存 关系型数据库
sqlite 数据库 介绍
sqlite 数据库 介绍
64 0
|
3月前
|
SQL 机器学习/深度学习 数据采集
SQL与Python集成:数据库操作无缝衔接2a.bijius.com
Python与SQL的集成是现代数据科学和工程实践的核心。通过有效的数据查询、管理与自动化,可以显著提升数据分析和决策过程的效率与准确性。随着技术的不断发展,这种集成的应用场景将更加广泛,为数据驱动的创新提供更强大的支持。