一个相同查询在不同 RDS for MySQL 实例上性能差异的案例分析

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 一个相同查询在不同 RDS for MySQL 实例上性能差异的案例分析 1. 问题出现 2. 问题原因 3. 问题解决 4. 问题结论 相同查询在数据量相近的情况下在不同 RDS for MySQL 实例上有不同的性能表现,容易引发用户对 RDS for MySQL 实例的性能差异性的疑虑,本文分享下近期碰到的一个原因比较隐蔽但很常见的案例。

一个相同查询在不同 RDS for MySQL 实例上性能差异的案例分析

1. 问题出现

2. 问题原因

3. 问题解决

4. 问题结论



相同查询在数据量相近的情况下在不同 RDS for MySQL 实例上有不同的性能表现,容易引发用户对 RDS for MySQL 实例的性能差异性的疑虑,本文分享下近期碰到的一个原因比较隐蔽但很常见的案例。

1. 问题出现

一个用户的下述查询在 RDS for MySQL 实例 A 上执行需要  30+ 毫秒 ,而在 RDS for MySQL 实例 B 执行需要  12+ 秒  

SELECT A.PayId, A.sourceType, 
A.txnTime, A.txnEndTime, A.invid, A.payStatus, 
A.invstatus makeinvoicestatus, A.createTime, B.invstatus invstatus, F.returncode returncode
FROM Pay A
LEFT JOIN 
(
  SELECT  M.invstatus invstatus,  M.PayId PayId,   M.invid invid
  FROM  inv_msg M
  WHERE M.sourcetype != '03'
) B ON A.PayId = B.PayId
LEFT JOIN 
(
  SELECT C.invid invoiceids,  C.returncode, C.creatime
  FROM inv_detail C,
    (
      SELECT D.invid invoiceids, max(D.creatime) creatime
      FROM inv_detail D
      GROUP BY  D.invid
    ) E
  WHERE C.invid = E.invoiceids
  AND C.creatime = E.creatime
) F ON B.invid = F.invoiceids
WHERE A.deleteStatus = 0
AND A.payStatus IN ( '904', '905', '906', '907','908','909' )
AND A.sourceType IN ('01', '02')
ORDER BY txnTime DESC
LIMIT 0,10;​
AI 代码解读


2. 问题原因

排查 SQL 在 RDS for MySQL 实例 A 和 B 上的执行计划,发现不一致。
执行时间长 - A

id	select_type	table		type	possible_keys			key			key_len		ref				rows	Extra
1	PRIMARY	    A	    	ALL		payStatus,sourceType	NULL		NULL		NULL			26427	Using where; Using temporary; Using filesort
1	PRIMARY	    <derived2>	ALL		NULL					NULL		NULL		NULL			8737	Using where; Using join buffer (Block Nested Loop)
1	PRIMARY	    <derived3>	ref		<auto_key0>				<auto_key0>	8			B.invid			10		NULL
3	DERIVED	    <derived4>	ALL		NULL					NULL		NULL		NULL			10694	NULL
3	DERIVED	    C			ref		invid					invid		8			F.invoiceids	1		Using where
4	DERIVED	    D			index	invid					invid		8			NULL			10694	NULL
2	DERIVED	    M			ALL		NULL					NULL		NULL		NULL			8737	Using where
AI 代码解读


执行时间短 - B

id	select_type	table		type	possible_keys			key			key_len		ref							rows	Extra
1	PRIMARY		A			index	payStatus,sourceType	txnTime		6			NULL						1		Using where
1	PRIMARY		<derived2>	ref		<auto_key1>				<auto_key1>	8			pc_vqgc_0000.A.unionPayId	15		NULL
1	PRIMARY		<derived3>	ref		<auto_key0>				<auto_key0>	8			B.invid						10		NULL
3	DERIVED		<derived4>	ALL		NULL					NULL		NULL		NULL						10506	NULL
3	DERIVED		C			ref		invid					invid		8			F.invoiceids				1		Using where
4	DERIVED		D			index	invid					invid		8			NULL						10506	NULL
2	DERIVED		M			ALL		sourcetype				NULL		NULL		NULL						8928	Using where
AI 代码解读


 
从执行计划对比看问题出现在 表 A 和 中间表 B 关联这步
执行计划 A 的 Extra 信息显示  Using join buffer (Block Nested Loop),说明如果选择单纯的 Nested Loop Join 成本会很高(在内层循环无法使用索引的场景下,成本是 O(Rn x Sn))。
优化器为了提高效率,因此选择了 Block Nested Loop。
对比执行计划 B,内层使用的索引是 MySQL 自动创建的(auto_key1),检查优化器开关配置是否有区别,以防万一。
 
// 检查优化器开关配置
show global variables like 'optimizer_switch' \G

*************************** 1. row ***************************
Variable_name: optimizer_switch
        Value: index_merge=on,index_merge_union=on,index_merge_sort_union=on,index_merge_intersection=on,engine_condition_pushdown=on,index_condition_pushdown=on,mrr=on,mrr_cost_based=on,block_nested_loop=on,batched_key_access=off,materialization=on,semijoin=on,loosescan=on,firstmatch=on,subquery_materialization_cost_based=on,use_index_extensions=on

// 输出格式化后
index_merge=on
index_merge_union=on
index_merge_sort_union=on
index_merge_intersection=on
engine_condition_pushdown=on
index_condition_pushdown=on
mrr=on
mrr_cost_based=on
block_nested_loop=on
batched_key_access=off
materialization=on
semijoin=on
loosescan=on
firstmatch=on
subquery_materialization_cost_based=on
use_index_extensions=on
AI 代码解读
 
对比两个实例优化器开关配置相同,且 materialization 和 subquery_materialization_cost_based 都已经打开, 加之执行计划 A 中有物化表的使用,因此排除掉优化器开关配置问题。
 
此时问题就比较明朗了, 应该是关联的两个字段类型不匹配,导致无法通过索引物化临时表的关联字段来使用 Nested Loop Join
 
带着上面的怀疑检查下两个实例的表 Pay 和 inv_msg 的关联字段 PayId 的字段类型。
// ========= 执行快 ========= 
// 表 pay
CREATE TABLE `pay` (
  `PayId` bigint(20) NOT NULL AUTO_INCREMENT,
  `companyId` bigint(20) DEFAULT NULL,
  .......
  `txnEndTime` datetime DEFAULT NULL,
  `deleteStatus` varchar(255) DEFAULT '0',
  PRIMARY KEY (`unionPayId`),
  KEY `companyId` (`companyId`) USING BTREE,
  KEY `invid` (`invId`) USING BTREE,
  KEY `payStatus` (`payStatus`) USING BTREE,
  KEY `sourceType` (`sourceType`) USING BTREE,
  KEY `txnTime` (`txnTime`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=24906 DEFAULT CHARSET=utf8

// 表 inv_msg
CREATE TABLE `inv_msg ` (
`invid` bigint(20) NOT NULL AUTO_INCREMENT,
  `payid` bigint(20) NOT NULL,
  ......
  `invoicestatus` varchar(2) NOT NULL DEFAULT '0',
  `sourcetype` varchar(200) NOT NULL',
  PRIMARY KEY (`invoiceid`),
  KEY `unionpayid` (`unionpayid`) USING BTREE,
  KEY `invoicestatus` (`invoicestatus`) USING BTREE,
  KEY `sourcetype` (`sourcetype`,`unionpayid`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=8897 DEFAULT CHARSET=utf8

AI 代码解读
// ========= 执行慢 ========= 
// 表 pay
CREATE TABLE `pay` (
  `PayId` bigint(20) NOT NULL AUTO_INCREMENT,
  `companyId` bigint(20) DEFAULT NULL,
  .......
  `txnEndTime` datetime DEFAULT NULL,
  `deleteStatus` varchar(255) DEFAULT '0',
  PRIMARY KEY (`unionPayId`),
  KEY `companyId` (`companyId`) USING BTREE,
  KEY `invid` (`invId`) USING BTREE,
  KEY `payStatus` (`payStatus`) USING BTREE,
  KEY `sourceType` (`sourceType`) USING BTREE,
  KEY `txnTime` (`txnTime`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=24906 DEFAULT CHARSET=utf8

// 表 inv_msg
CREATE TABLE `inv_msg ` (
`invid` bigint(20) NOT NULL AUTO_INCREMENT,
  `payid` varchar(20) NOT NULL,
  ......
  `invoicestatus` varchar(2) NOT NULL DEFAULT '0',
  `sourcetype` varchar(200) NOT NULL',
  PRIMARY KEY (`invoiceid`),
  KEY `unionpayid` (`unionpayid`) USING BTREE,
  KEY `invoicestatus` (`invoicestatus`) USING BTREE,
  KEY `sourcetype` (`sourcetype`,`unionpayid`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=8897 DEFAULT CHARSET=utf8
AI 代码解读
 
可以看到 payId 字段在执行快场景下 2 个表都是 big int 类型;而在执行慢的场景下,2个表的字段类型分别为 big int 和 varchar,导致执行计划选择了对无法使用索引场景优化的 Block Netsted Loop。

3. 问题解决

理清问题的根源,就有了针对性的方法。
建议用户修改 表 inv_msg 的字段 payid 类型为 big int not null,重新收集统计信息后问题解决。
// 业务低峰期执行
alter table inv_msg algorithm=copy, lock=shared, modify payid bigint not null;  

// 重新收集统计信息
analyze table inv_msg;​
AI 代码解读


4. 问题结论

  • 需要严格遵守规范进行开发工作。

  • 用户 DBA 应该进行 SQL 审核工作。
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
【免费动手教程上线】阿里云RDS MySQL推出大容量高性能存储:高性能本地盘(最高16TB存储空间)、高性能云盘(最高64TB存储空间)
阿里云RDS MySQL提供高性能本地盘与高性能云盘等存储方案,满足用户大容量、低延迟需求。高性能本地盘单盘最大16TB,IO延时微秒级;高性能云盘兼容ESSD特性,支持IO性能突发、BPE及16K原子写等能力。此外,阿里云还提供免费动手体验教程,帮助用户直观感受云数据库 RDS 存储性能表现。
在MySQL Shell里 重启MySQL 8.4实例
在MySQL Shell里 重启MySQL 8.4实例
98 2
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
数据库数据恢复——MySQL简介和数据恢复案例
MySQL数据库数据恢复环境&故障: 本地服务器,安装的windows server操作系统。 操作系统上部署MySQL单实例,引擎类型为innodb,表空间类型为独立表空间。该MySQL数据库没有备份,未开启binlog。 人为误操作,在用Delete命令删除数据时未添加where子句进行筛选导致全表数据被删除,删除后未对该表进行任何操作。
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
随着数据量增长和业务扩展,单个数据库难以满足需求,需调整为集群模式以实现负载均衡和读写分离。MySQL主从复制是常见的高可用架构,通过binlog日志同步数据,确保主从数据一致性。本文详细介绍MySQL主从复制原理及配置步骤,包括一主二从集群的搭建过程,帮助读者实现稳定可靠的数据库高可用架构。
345 9
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
服务器数据恢复—云服务器上mysql数据库数据恢复案例
某ECS网站服务器,linux操作系统+mysql数据库。mysql数据库采用innodb作为默认存储引擎。 在执行数据库版本更新测试时,操作人员误误将在本来应该在测试库执行的sql脚本在生产库上执行,导致生产库上部分表被truncate,还有部分表中少量数据被delete。
158 25
10个案例告诉你mysql不使用子查询的原因
大家好,我是V哥。上周与朋友讨论数据库子查询问题,深受启发。为此,我整理了10个案例,详细说明如何通过优化子查询提升MySQL性能。主要问题包括性能瓶颈、索引失效、查询优化器复杂度及数据传输开销等。解决方案涵盖使用EXISTS、JOIN、IN操作符、窗口函数、临时表及索引优化等。希望通过这些案例,帮助大家在实际开发中选择更高效的查询方式,提升系统性能。关注V哥,一起探讨技术,欢迎点赞支持!
428 5
数据库运维:mysql 数据库迁移方法-mysqldump
本文介绍了MySQL数据库迁移的方法与技巧,重点探讨了数据量大小对迁移方式的影响。对于10GB以下的小型数据库,推荐使用mysqldump进行逻辑导出和source导入;10GB以上可考虑mydumper与myloader工具;100GB以上则建议物理迁移。文中还提供了统计数据库及表空间大小的SQL语句,并讲解了如何使用mysqldump导出存储过程、函数和数据结构。通过结合实际应用场景选择合适的工具与方法,可实现高效的数据迁移。
314 1
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问