关闭线程的正确方法:“优雅”的中断

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 前文从任务到线程:Java结构化并发应用程序中介绍了如何安排任务启动线程。线程在启动之后,正常的情况下会运行到任务完成,但是有的情况下会需要提前结束任务,如用户取消操作等。

前文从任务到线程:Java结构化并发应用程序中介绍了如何安排任务启动线程。
线程在启动之后,正常的情况下会运行到任务完成,但是有的情况下会需要提前结束任务,如用户取消操作等。可是,让线程安全、快速和可靠地停止并不是件容易的事情,因为Java中没有提供安全的机制来终止线程。虽然有Thread.stop/suspend等方法,但是这些方法存在缺陷,不能保证线程中共享数据的一致性,所以应该避免直接调用。

线程在终止的过程中,应该先进行操作来清除当前的任务,保持共享数据的一致性,然后再停止。

庆幸的是,Java中提供了中断机制,来让多线程之间相互协作,由一个进程来安全地终止另一个进程。

1. 任务的取消

如果外部的代码能在某个操作正常完成之前将其设置为完成状态,则该操作为可取消的Cancellable)。

操作被取消的原因有很多,比如超时,异常,请求被取消等等。

一个可取消的任务要求必须设置取消策略,即如何取消,何时检查取消命令,以及接收到取消命令之后如何处理。

最简单的取消办法就是利用取消标志位,如下所示:

public class PrimeGenerator implements Runnable {
    private static ExecutorService exec = Executors.newCachedThreadPool();

    private final List<BigInteger> primes
            = new ArrayList<BigInteger>();
    //取消标志位
    private volatile boolean cancelled;

    public void run() {
        BigInteger p = BigInteger.ONE;
        //每次在生成下一个素数时坚持是否取消
        //如果取消,则退出
        while (!cancelled) {
            p = p.nextProbablePrime();
            synchronized (this) {
                primes.add(p);
            }
        }
    }

    public void cancel() {
        cancelled = true;
    }

    public synchronized List<BigInteger> get() {
        return new ArrayList<BigInteger>(primes);
    }

    static List<BigInteger> aSecondOfPrimes() throws InterruptedException {
        PrimeGenerator generator = new PrimeGenerator();
        exec.execute(generator);
        try {
            SECONDS.sleep(1);
        } finally {
            generator.cancel();
        }
        return generator.get();
    }
}

这段代码用于生成素数,并在任务运行一秒钟之后终止。其取消策略为:通过改变取消标志位取消任务,任务在每次生成下一随机素数之前检查任务是否被取消,被取消后任务将退出。

然而,该机制的最大的问题就是无法应用于拥塞方法。假设在循环中调用了拥塞方法,任务可能因拥塞而永远不会去检查取消标志位,甚至会造成永远不能停止。

1.1 中断

为了解决拥塞方法带来的问题,就需要使用中断机制来取消任务。

虽然在Java规范中,线程的取消和中断没有必然联系,但是在实践中发现:中断是取消线程的最合理的方式

Thread类中和中断相关的方法如下:

public class Thread {
    // 中断当前线程
    public void interrupt();
    // 判断当前线程是否被中断
    public boolen isInterrupt();
    // 清除当前线程的中断状态,并返回之前的值
    public static boolen interrupt();   
}

调用Interrupt方法并不是意味着要立刻停止目标线程,而只是传递请求中断的消息。所以对于中断操作的正确理解为:正在运行的线程收到中断请求之后,在下一个合适的时刻中断自己。

使用中断方法改进素数生成类如下:

public class PrimeProducer extends Thread {
    private final BlockingQueue<BigInteger> queue;
    PrimeProducer(BlockingQueue<BigInteger> queue) {
        this.queue = queue;
    }

    public void run() {
        try {
            BigInteger p = BigInteger.ONE;
            //使用中断的方式来取消任务
            while (!Thread.currentThread().isInterrupted())
                //put方法会隐式检查并响应中断
                queue.put(p = p.nextProbablePrime());
        } catch (InterruptedException consumed) {
            /* 允许任务退出 */
        }
    }

    public void cancel() {
        interrupt();
    }
}

代码中有两次检查中断请求:

  • 第一次是在循环开始前,显示检查中断请求;
  • 第二次是在put方法,该方法为拥塞的,会隐式坚持当前线程是否被中断;

1.2 中断策略

和取消策略类似,可以被中断的任务也需要有中断策略:
即如何中断,合适检查中断请求,以及接收到中断请求之后如何处理。

由于每个线程拥有各自的中断策略,因此除非清楚中断对目标线程的含义,否者不要中断该线程。

正是由于以上原因,大多数拥塞的库函数在检测到中断都是抛出中断异常(InterruptedException)作为中断响应,让线程的所有者去处理,而不是去真的中断当前线程。

虽然有人质疑Java没有提供抢占式的中断机制,但是开发人员通过处理中断异常的方法,可以定制更为灵活的中断策略,从而在响应性和健壮性之间做出合理的平衡。

一般情况的中断响应方法为:

  1. 传递异常:收到中断异常之后,直接将该异常抛出;
  2. 回复中断状态:即再次调用Interrupt方法,恢复中断状态,让调用堆栈的上层能看到中断状态进而处理它。

切记,只有实现了线程中断策略的代码才能屏蔽中断请求,在常规的任务和库代码中都不应该屏蔽中断请求。中断请求是线程中断和取消的基础。

1.3 定时运行

定时运行一个任务是很常见的场景,很多问题是很费时间的,就需在规定时间内完成,如果没有完成则取消任务。

以下代码就是一个定时执行任务的实例:

public class TimedRun1 {
    private static final ScheduledExecutorService cancelExec = Executors.newScheduledThreadPool(1);

    public static void timedRun(Runnable r,
                                long timeout, TimeUnit unit) {
        final Thread taskThread = Thread.currentThread();
        cancelExec.schedule(new Runnable() {
            public void run() {
                // 中断线程,
                // 违规,不能在不知道中断策略的前提下调用中断,
                // 该方法可能被任意线程调用。
                taskThread.interrupt();
            }
        }, timeout, unit);
        r.run();
    }
}

很可惜,这是反面的例子,因为timedRun方法在不知道Runnable对象的中断策略的情况下,就中断该任务,这样会承担很大的风险。而且如果Runnable对象不支持中断, 则该定时模型就会失效。

为了解决上述问题,就需要执行任务都线程有自己的中断策略,如下:

public class LaunderThrowable {
    public static RuntimeException launderThrowable(Throwable t) {
        if (t instanceof RuntimeException)
            return (RuntimeException) t;
        else if (t instanceof Error)
            throw (Error) t;
        else
            throw new IllegalStateException("Not unchecked", t);
    }
}

public class TimedRun2 {
    private static final ScheduledExecutorService cancelExec = newScheduledThreadPool(1);

    public static void timedRun(final Runnable r,
                                long timeout, TimeUnit unit)
            throws InterruptedException {
        class RethrowableTask implements Runnable {
            private volatile Throwable t;

            public void run() {
                try {
                    r.run();
                } catch (Throwable t) {
                    //中断策略,保存当前抛出的异常,退出
                    this.t = t;
                }
            }

            // 再次抛出异常
            void rethrow() {
                if (t != null)
                    throw launderThrowable(t);
            }
        }

        RethrowableTask task = new RethrowableTask();
        final Thread taskThread = new Thread(task);
        //开启任务子线程
        taskThread.start();
        //定时中断任务子线程
        cancelExec.schedule(new Runnable() {
            public void run() {
                taskThread.interrupt();
            }
        }, timeout, unit);

        //限时等待任务子线程执行完毕
        taskThread.join(unit.toMillis(timeout));
        //尝试抛出task在执行中抛出到异常
        task.rethrow();
    }
}

无论Runnable对象是否支持中断,RethrowableTask对象都会记录下来发生的异常信息并结束任务,并将该异常再次抛出。

1.4 通过Future取消任务

Future用来管理任务的生命周期,自然也可以来取消任务,调用Future.cancel方法就是用中断请求结束任务并退出,这也是Executor的默认中断策略。

用Future实现定时任务的代码如下:

public class TimedRun {
    private static final ExecutorService taskExec = Executors.newCachedThreadPool();

    public static void timedRun(Runnable r,
                                long timeout, TimeUnit unit)
            throws InterruptedException {
        Future<?> task = taskExec.submit(r);
        try {
            task.get(timeout, unit);
        } catch (TimeoutException e) {
            // 因超时而取消任务
        } catch (ExecutionException e) {
            // 任务异常,重新抛出异常信息
            throw launderThrowable(e.getCause());
        } finally {
            // 如果该任务已经完成,将没有影响
            // 如果任务正在运行,将因为中断而被取消
            task.cancel(true); // interrupt if running
        }
    }
}

1.5 不可中断的拥塞

一些的方法的拥塞是不能响应中断请求的,这类操作以I/O操作居多,但是可以让其抛出类似的异常,来停止任务:

  • Socket I/O: 关闭底层socket,所有因执行读写操作而拥塞的线程会抛出SocketException
  • 同步 I/O:大部分Channel都实现了InterruptiableChannel接口,可以响应中断请求,抛出异常ClosedByInterruptException;
  • Selector的异步 I/O:Selector执行select方法之后,再执行closewakeUp方法就会抛出异常ClosedSelectorException

以套接字为例,其利用关闭socket对象来响应异常的实例如下:

public class ReaderThread extends Thread {
    private static final int BUFSZ = 512;
    private final Socket socket;
    private final InputStream in;

    public ReaderThread(Socket socket) throws IOException {
        this.socket = socket;
        this.in = socket.getInputStream();
    }

    public void interrupt() {
        try {
            // 关闭套接字
            // 此时in.read会抛出异常
            socket.close();
        } catch (IOException ignored) {
        } finally {
            // 正常的中断
            super.interrupt();
        }
    }

    public void run() {
        try {
            byte[] buf = new byte[BUFSZ];
            while (true) {
                int count = in.read(buf);
                if (count < 0)
                    break;
                else if (count > 0)
                    processBuffer(buf, count);
            }
        } catch (IOException e) { 
            // 如果socket关闭,in.read方法将会抛出异常
            // 借此机会,响应中断,线程退出
        }
    }

    public void processBuffer(byte[] buf, int count) {
    }
}

2. 停止基于线程的服务

一个应用程序是由多个服务构成的,而每个服务会拥有多个线程为其工作。当应用程序关闭服务时,由服务来关闭其所拥有的线程。服务为了便于管理自己所拥有的线程,应该提供生命周期方来关闭这些线程。对于ExecutorService,其包含线程池,是其下属线程的拥有者,所提供的生命周期方法就是shutdownshutdownNow方法。

如果服务的生命周期大于所创建线程的生命周期,服务就应该提供生命周期方法来管理线程。

2.1 强行关闭和平缓关闭

我们以日志服务为例,来说明两种关闭方式的不同。首先,如下代码是不支持关闭的日志服务,其采用多生产者-单消费者模式,生产者将日志消息放入拥塞队列中,消费者从队列中取出日志打印出来。

public class LogWriter {
    // 拥塞队列作为缓存区
    private final BlockingQueue<String> queue;
    // 日志线程
    private final LoggerThread logger;
    // 队列大小
    private static final int CAPACITY = 1000;

    public LogWriter(Writer writer) {
        this.queue = new LinkedBlockingQueue<String>(CAPACITY);
        this.logger = new LoggerThread(writer);
    }

    public void start() {
        logger.start();
    }

    public void log(String msg) throws InterruptedException {
        queue.put(msg);
    }

    private class LoggerThread extends Thread {
        //线程安全的字节流
        private final PrintWriter writer;

        public LoggerThread(Writer writer) {
            this.writer = new PrintWriter(writer, true); // autoflush
        }

        public void run() {
            try {
                while (true)
                    writer.println(queue.take());
            } catch (InterruptedException ignored) {
            } finally {
                writer.close();
            }
        }
    }
}

如果没有终止操作,以上任务将无法停止,从而使得JVM也无法正常退出。但是,让以上的日志服务停下来其实并非难事,因为拥塞队列的take方法支持响应中断,这样直接关闭服务的方法就是强行关闭,强行关闭的方式不会去处理已经提交但还未开始执行的任务。

但是,关闭日志服务前,拥塞队列中可能还有没有及时打印出来的日志消息,所以强行关闭日志服务并不合适,需要等队列中已经存在的消息都打印完毕之后再停止,这就是平缓关闭,也就是在关闭服务时会等待已提交任务全部执行完毕之后再退出。

除此之外,在取消生产者-消费者操作时,还需要同时告知消费者和生产者相关操作已经被取消。

平缓关闭的日志服务如下,其采用了类似信号量的方式记录队列中尚未处理的消息数量。

public class LogService {
    private final BlockingQueue<String> queue;
    private final LoggerThread loggerThread;
    private final PrintWriter writer;
    @GuardedBy("this") private boolean isShutdown;
    // 信号量 用来记录队列中消息的个数
    @GuardedBy("this") private int reservations;

    public LogService(Writer writer) {
        this.queue = new LinkedBlockingQueue<String>();
        this.loggerThread = new LoggerThread();
        this.writer = new PrintWriter(writer);
    }

    public void start() {
        loggerThread.start();
    }

    public void stop() {
        synchronized (this) {
            isShutdown = true;
        }
        loggerThread.interrupt();
    }

    public void log(String msg) throws InterruptedException {
        synchronized (this) {
            //同步方法判断是否关闭和修改信息量
            if (isShutdown) // 如果已关闭,则不再允许生产者将消息添加到队列,会抛出异常
                throw new IllegalStateException(/*...*/);
            //如果在工作状态,信号量增加
            ++reservations;
        }
        // 消息入队列;
        queue.put(msg);
    }

    private class LoggerThread extends Thread {
        public void run() {
            try {
                while (true) {
                    try {
                        //同步方法读取关闭状态和信息量
                        synchronized (LogService.this) {
                            //如果进程被关闭且队列中已经没有消息了,则消费者退出
                            if (isShutdown && reservations == 0)
                                break;
                        }
                        // 取出消息
                        String msg = queue.take();
                        // 消费消息前,修改信号量
                        synchronized (LogService.this) {
                            --reservations;
                        }
                        writer.println(msg);
                    } catch (InterruptedException e) { /* retry */
                    }
                }
            } finally {
                writer.close();
            }
        }
    }
}

2.2 关闭ExecutorService

ExecutorService中,其提供了shutdownshutdownNow方法来分别实现平缓关闭和强制关闭:

  • shutdownNow:强制关闭,响应速度快,但是会有风险,因为有任务肯执行到一半被终止;
  • shutdown:平缓关闭,响应速度较慢,会等到全部已提交的任务执行完毕之后再退出,更为安全。

这里还需要说明下shutdownNow方法的局限性,因为强行关闭直接关闭线程,所以无法通过常规的方法获得哪些任务还没有被执行。这就会导致我们无纺知道线程的工作状态,就需要服务自身去记录任务状态。如下为示例代码:

public class TrackingExecutor extends AbstractExecutorService {
    private final ExecutorService exec;

    //被取消任务的队列
    private final Set<Runnable> tasksCancelledAtShutdown =
            Collections.synchronizedSet(new HashSet<Runnable>());

    public TrackingExecutor(ExecutorService exec) {
        this.exec = exec;
    }

    public void shutdown() {
        exec.shutdown();
    }

    public List<Runnable> shutdownNow() {
        return exec.shutdownNow();
    }

    public boolean isShutdown() {
        return exec.isShutdown();
    }

    public boolean isTerminated() {
        return exec.isTerminated();
    }

    public boolean awaitTermination(long timeout, TimeUnit unit)
            throws InterruptedException {
        return exec.awaitTermination(timeout, unit);
    }

    public List<Runnable> getCancelledTasks() {
        if (!exec.isTerminated())
            throw new IllegalStateException(/*...*/);
        return new ArrayList<Runnable>(tasksCancelledAtShutdown);
    }

    public void execute(final Runnable runnable) {
        exec.execute(new Runnable() {
            public void run() {
                try {
                    runnable.run();
                } finally {
                    // 如果当前任务被中断且执行器被关闭,则将该任务加入到容器中
                    if (isShutdown()
                            && Thread.currentThread().isInterrupted())
                        tasksCancelledAtShutdown.add(runnable);
                }
            }
        });
    }
}

3. 处理非正常线程终止

导致线程非正常终止的主要原因就是RuntimeException,其表示为不可修复的错误。一旦子线程抛出异常,该异常并不会被父线程捕获,而是会直接抛出到控制台。所以要认真处理线程中的异常,尽量设计完备的try-catch-finally代码块。

当然,异常总是会发生的,为了处理能主动解决未检测异常问题,Thread.API提供了接口UncaughtExceptionHandler

public interface UncaughtExceptionHandler {
    void uncaughtException(Thread t, Throwable e);
}

如果JVM发现一个线程因未捕获异常而退出,就会把该异常交个Thread对象设置的UncaughtExceptionHandler来处理,如果Thread对象没有设置任何异常处理器,那么默认的行为就是上面提到的抛出到控制台,在System.err中输出。

Thread对象通过setUncaughtExceptionHandler方法来设置UncaughtExceptionHandler,比如这样:

public class WitchCaughtThread  
{  
    public static void main(String args[])  
    {  
        Thread thread = new Thread(new Task());  
        thread.setUncaughtExceptionHandler(new ExceptionHandler());  
        thread.start();  
    }  
}  
  
class ExceptionHandler implements UncaughtExceptionHandler  
{  
    @Override  
    public void uncaughtException(Thread t, Throwable e)  
    {  
        System.out.println("==Exception: "+e.getMessage());  
    }  
}  

同样可以为所有的Thread设置一个默认的UncaughtExceptionHandler,通过调用Thread.setDefaultUncaughtExceptionHandler(Thread.UncaughtExceptionHandler eh)方法,这是Thread的一个static方法。

下面是一个例子,即发生为捕获异常时将异常写入日志:

public class UEHLogger implements Thread.UncaughtExceptionHandler {

    // 将未知的错误计入到日志中
    public void uncaughtException(Thread t, Throwable e) {
        Logger logger = Logger.getAnonymousLogger();
        logger.log(Level.SEVERE, "Thread terminated with exception: " + t.getName(), e);
    }
}

Executor框架中,需要将异常的捕获封装到Runnable或者Callable中并通过execute提交的任务,才能将它抛出的异常交给UncaughtExceptionHandler,而通过submit提交的任务,无论是抛出的未检测异常还是已检查异常,都将被认为是任务返回状态的一部分。如果一个由submit提交的任务由于抛出了异常而结束,那么这个异常将被Future.get封装在ExecutionException中重新抛出。

public class ExecuteCaught  
{  
    public static void main(String[] args)  
    {  
        ExecutorService exec = Executors.newCachedThreadPool();  
        exec.execute(new ThreadPoolTask());  
        exec.shutdown();  
    }  
}  
  
class ThreadPoolTask implements Runnable  
{  
    @Override  
    public void run()  
    {  
        Thread.currentThread().setUncaughtExceptionHandler(new ExceptionHandler());  
        System.out.println(3/2);  
        System.out.println(3/0);  
        System.out.println(3/1);  
    }  
}  

扩展阅读:

  1. 多线程安全性:每个人都在谈,但是不是每个人都谈地清
  2. 对象共享:Java并发环境中的烦心事
  3. 从Java内存模型角度理解安全初始化
  4. 从任务到线程:Java结构化并发应用程序
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
27天前
|
Java 开发者
在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口
【10月更文挑战第20天】在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口。本文揭示了这两种方式的微妙差异和潜在陷阱,帮助你更好地理解和选择适合项目需求的线程创建方式。
19 3
|
27天前
|
Java 开发者
在Java多线程编程中,选择合适的线程创建方法至关重要
【10月更文挑战第20天】在Java多线程编程中,选择合适的线程创建方法至关重要。本文通过案例分析,探讨了继承Thread类和实现Runnable接口两种方法的优缺点及适用场景,帮助开发者做出明智的选择。
17 2
|
27天前
|
安全 Java
Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧
【10月更文挑战第20天】Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧,包括避免在循环外调用wait()、优先使用notifyAll()、确保线程安全及处理InterruptedException等,帮助读者更好地掌握这些方法的应用。
17 1
|
27天前
|
Java 开发者
Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点
【10月更文挑战第20天】Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点,重点解析为何实现Runnable接口更具灵活性、资源共享及易于管理的优势。
33 1
|
27天前
|
Java
在Java多线程编程中,`wait()`和`notify()`方法的相遇如同一场奇妙的邂逅
在Java多线程编程中,`wait()`和`notify()`方法的相遇如同一场奇妙的邂逅。它们用于线程间通信,使线程能够协作完成任务。通过这些方法,生产者和消费者线程可以高效地管理共享资源,确保程序的有序运行。正确使用这些方法需要遵循同步规则,避免虚假唤醒等问题。示例代码展示了如何在生产者-消费者模型中使用`wait()`和`notify()`。
25 1
|
27天前
|
安全 Java 开发者
Java多线程中的`wait()`、`notify()`和`notifyAll()`方法,探讨了它们在实现线程间通信和同步中的关键作用
本文深入解析了Java多线程中的`wait()`、`notify()`和`notifyAll()`方法,探讨了它们在实现线程间通信和同步中的关键作用。通过示例代码展示了如何正确使用这些方法,并分享了最佳实践,帮助开发者避免常见陷阱,提高多线程程序的稳定性和效率。
34 1
|
27天前
|
Java
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是线程间通信的核心机制。
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件成立时被唤醒,从而有效解决数据一致性和同步问题。本文通过对比其他通信机制,展示了 `wait()` 和 `notify()` 的优势,并通过生产者-消费者模型的示例代码,详细说明了其使用方法和重要性。
25 1
|
1月前
|
监控 Java
在实际应用中选择线程异常捕获方法的考量
【10月更文挑战第15天】选择最适合的线程异常捕获方法需要综合考虑多种因素。没有一种方法是绝对最优的,需要根据具体情况进行权衡和选择。在实际应用中,还需要不断地实践和总结经验,以提高异常处理的效果和程序的稳定性。
21 3
|
1月前
|
监控 Java
捕获线程执行异常的多种方法
【10月更文挑战第15天】捕获线程执行异常的方法多种多样,每种方法都有其特点和适用场景。在实际开发中,需要根据具体情况选择合适的方法或结合多种方法来实现全面有效的线程异常捕获。这有助于提高程序的健壮性和稳定性,减少因线程异常带来的潜在风险。
21 1