阿里云Redis混合存储典型场景:如何轻松搭建视频直播间系统

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
简介: 本文主要介绍视频直播间系统,以及如何使用阿里云Redis混合存储实例方便快捷的构建大数据量,低延迟的视频直播间服务。

本文主要介绍视频直播间系统,以及如何使用阿里云Redis混合存储实例方便快捷的构建大数据量,低延迟的视频直播间服务。

背景

视频直播间作为直播系统对外的表现形式,在整个系统中处于核心地位。通常除了视频直播窗口外,直播间还包含在线用户,礼物,评论,点赞,排行榜等信息。直播间消息,时效性高,互动性强,对系统时延有着非常高的要求,非常适合使用Redis等缓存服务来处理。

直播信息

实时排行信息

实时排行信息包含直播间在线用户列表,各种礼物排行榜,弹幕消息(可以理解为按消息维度的消息排行榜)等信息,适合使用Redis中的SortedSet结构进行存储。

例如,以unix timestamp+毫秒数为分值,记录user55的直播间增加的5条弹幕

redis> ZADD user55:_danmu 1523959031601166 message111111111111
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959031601266 message222222222222
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959088894232 message33333
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959090390160 message444444
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959092951218 message5555
(integer) 1

返回最新的3条弹幕信息:

redis> ZREVRANGEBYSCORE user55:_danmu +inf -inf LIMIT 0 3
1) "message5555"
2) "message444444"
3) "message33333"

返回指定时间段内的3条弹幕信息:

redis> ZREVRANGEBYSCORE user55:_danmu 1523959088894232 -inf LIMIT 0 3
1) "message33333"
2) "message222222222222"
3) "message111111111111"

计数类信息

计数类信息以用户维度为例,有未读消息数,关注数,粉丝数,经验值等等。这类消息适合以Redis中的Hash结构进行存储。

redis> HSET user:55 follower 5
(integer) 1
redis> HINCRBY user:55 follower 1 //关注数+1
(integer) 6 
redis> HGETALL user:55
1) "follow"
2) "6"

时间线信息

时间线信息是以时间为维度的信息列表,典型的比如主播动态,新帖。这类信息排序方式是固定的时间顺序,可以考虑使用List或者SortedSet来存储。

redis> LPUSH user:55_recent_activitiy  '{datetime:201804112010,type:publish,title:开播啦,content:加油}'
(integer) 1
redis> LPUSH user:55_recent_activitiy '{datetime:201804131910,type:publish,title:请假,content:抱歉,今天有事鸽一天}'
(integer) 2
redis> LRANGE user:55_recent_activitiy 0 10
1) "{datetime:201804131910,type:publish,title:\xe8\xaf\xb7\xe5\x81\x87\",content:\xe6\x8a\xb1\xe6\xad\x89\xef\xbc\x8c\xe4\xbb\x8a\xe5\xa4\xa9\xe6\x9c\x89\xe4\xba\x8b\xe9\xb8\xbd\xe4\xb8\x80\xe5\xa4\xa9}"
2) "{datetime:201804112010,type:publish,title:\xe5\xbc\x80\xe6\x92\xad\xe5\x95\xa6,content:\xe5\x8a\xa0\xe6\xb2\xb9}"

阿里云Redis优势

  • 阿里云主从版Redis提供10万的QPS,读写分离版本Redis提供60万QPS最大力度支持系统的高并发需求。
  • 资深专家团队深度开发维护Redis源码,经千万服务考验,超高稳定性和安全性。
  • 双机热备架构,故障秒级自动迁移,全力保障订单数据。
  • 一键创建,一键扩容,全方位智能监控运维平台。请求量,活跃度一眼就能看清。
  • 专业服务团队,实时监控可用性,7 x 24小时在线咨询。

使用Redis混合存储实例存储信息

阿里云Redis混合存储产品完全兼容Redis协议,用户无需修改任何代码,以低成本的NVMe盘存储不常访问的直播间数据,可以突破内存容量限制,单实例最高可支持TB级别的数据容量。
image

  1. 当Redis混合存储实例内存可以存储所有直播间数据时,访问所有直播间数据均可享受极致性能。
  2. 当直播间数据越来越多,快要超过实例内存限制时,Redis混合存储实例会自动从访问频率,访问时间等维度选择冷门的直播间数据,后台将其Value存储到磁盘上;
  3. 热门直播间数据仍然保留在内存中,性能不受任何影响;
  4. 当访问到磁盘上的冷门直播间数据时,数据会自动从后台加载到内存中,所有IO操作都经过阿里云自研的新一代存储引擎Fusion Engine极致优化,4K数据加载速度在20us左右;
  5. 通过将部分冷数据存储到磁盘的方式,有效降低了用户成本并突破内存对单实例容量的限制。

FYI

Redis混合存储产品与架构介绍
点击以下链接,申请免费试用Redis混合存储实例

目录
相关文章
|
6月前
|
NoSQL 算法 安全
redis分布式锁在高并发场景下的方案设计与性能提升
本文探讨了Redis分布式锁在主从架构下失效的问题及其解决方案。首先通过CAP理论分析,Redis遵循AP原则,导致锁可能失效。针对此问题,提出两种解决方案:Zookeeper分布式锁(追求CP一致性)和Redlock算法(基于多个Redis实例提升可靠性)。文章还讨论了可能遇到的“坑”,如加从节点引发超卖问题、建议Redis节点数为奇数以及持久化策略对锁的影响。最后,从性能优化角度出发,介绍了减少锁粒度和分段锁的策略,并结合实际场景(如下单重复提交、支付与取消订单冲突)展示了分布式锁的应用方法。
493 3
|
6月前
|
JSON NoSQL Redis
在Rocky9系统上安装并使用redis-dump和redis-load命令的指南
以上步骤是在Rocky9上使用redis-dump和redis-load命令顺利出行的秘籍。如果在实行的过程中,发现了新的冒险和挑战,那么就像一个勇敢的航海家,本着探索未知的决心,解决问题并前进。
225 14
|
5月前
|
机器学习/深度学习 数据采集 人机交互
springboot+redis互联网医院智能导诊系统源码,基于医疗大模型、知识图谱、人机交互方式实现
智能导诊系统基于医疗大模型、知识图谱与人机交互技术,解决患者“知症不知病”“挂错号”等问题。通过多模态交互(语音、文字、图片等)收集病情信息,结合医学知识图谱和深度推理,实现精准的科室推荐和分级诊疗引导。系统支持基于规则模板和数据模型两种开发原理:前者依赖人工设定症状-科室规则,后者通过机器学习或深度学习分析问诊数据。其特点包括快速病情收集、智能病症关联推理、最佳就医推荐、分级导流以及与院内平台联动,提升患者就诊效率和服务体验。技术架构采用 SpringBoot+Redis+MyBatis Plus+MySQL+RocketMQ,确保高效稳定运行。
399 0
|
6月前
|
存储 NoSQL Java
从扣减库存场景来讲讲redis分布式锁中的那些“坑”
本文从一个简单的库存扣减场景出发,深入分析了高并发下的超卖问题,并逐步优化解决方案。首先通过本地锁解决单机并发问题,但集群环境下失效;接着引入Redis分布式锁,利用SETNX命令实现加锁,但仍存在死锁、锁过期等隐患。文章详细探讨了通过设置唯一标识、续命机制等方法完善锁的可靠性,并最终引出Redisson工具,其内置的锁续命和原子性操作极大简化了分布式锁的实现。最后,作者剖析了Redisson源码,揭示其实现原理,并预告后续关于主从架构下分布式锁的应用与性能优化内容。
327 0
|
10月前
|
缓存 NoSQL 架构师
Redis批量查询的四种技巧,应对高并发场景的利器!
在高并发场景下,巧妙地利用缓存批量查询技巧能够显著提高系统性能。 在笔者看来,熟练掌握细粒度的缓存使用是每位架构师必备的技能。因此,在本文中,我们将深入探讨 Redis 中批量查询的一些技巧,希望能够给你带来一些启发。
Redis批量查询的四种技巧,应对高并发场景的利器!
|
8月前
|
存储 NoSQL 算法
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用的算法是哈希槽分区算法。Redis集群中有16384个哈希槽(槽的范围是 0 -16383,哈希槽),将不同的哈希槽分布在不同的Redis节点上面进行管理,也就是说每个Redis节点只负责一部分的哈希槽。在对数据进行操作的时候,集群会对使用CRC16算法对key进行计算并对16384取模(slot = CRC16(key)%16383),得到的结果就是 Key-Value 所放入的槽,通过这个值,去找到对应的槽所对应的Redis节点,然后直接到这个对应的节点上进行存取操作
|
8月前
|
存储 NoSQL Redis
投行系统的毫秒级榜单响应:如何用Redis ZSET破解同分排序难题?
通过Redis的ZSET数据结构和更新时间戳,解决投行交易系统实时排行榜中同分跳变的问题。具体方案为:将交易量作为整数部分,更新时间戳作为小数部分,确保同分时按最新更新排序,实现实时、高效、无需应用层干预的排行榜功能。一句话总结:通过Redis ZSET加更新时间戳,解决百万交易排行榜实时显示及同分难题。
|
11月前
|
存储 消息中间件 监控
Redis Stream:实时数据流的处理与存储
通过上述分析和具体操作示例,您可以更好地理解和应用 Redis Stream,满足各种实时数据处理需求。
961 14
|
12月前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
418 8
|
存储 NoSQL 算法
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用哈希槽分区算法,共有16384个哈希槽,每个槽分配到不同的Redis节点上。数据操作时,通过CRC16算法对key计算并取模,确定其所属的槽和对应的节点,从而实现高效的数据存取。
238 13

相关产品

  • 云数据库 Tair(兼容 Redis)