在Python中使用lambda高效操作列表的教程

简介: 转自 http://www.jb51.net/article/64833.htmlambdaPython用于支持将函数赋值给变量的一个操作符 默认是返回的,所以不用再加return关键字,不然会报错...

转自 http://www.jb51.net/article/64833.htm

lambda

Python用于支持将函数赋值给变量的一个操作符 默认是返回的,所以不用再加return关键字,不然会报错

result = lambda x: x * x
result(2) # return 4
map()/filter()/reduce()

需要两个参数,第一个是一个处理函数,第二个是一个序列(list,tuple,dict)
map()

将序列中的元素通过处理函数处理后返回一个新的列表
filter()

将序列中的元素通过函数过滤后返回一个新的列表
reduce()

将序列中的元素通过一个二元函数处理返回一个结果
将上面三个函数和lambda结合使用

li = [1, 2, 3, 4, 5]
# 序列中的每个元素加1
map(lambda x: x+1, li) # [2,3,4,5,6]

# 返回序列中的偶数
filter(lambda x: x % 2 == 0, li) # [2, 4]

# 返回所有元素相乘的结果
reduce(lambda x, y: x * y, li) # 1*2*3*4*5 = 120

sorted() 结合lambda对列表进行排序

sorted 用于列表的排序,比列表自带的更加智能 有两个列表,每个列表中都有一个字典([{},{}])要求将两个这样的列表合并后按照时间排序, 两个列表中的时间为了能够通过json输出已经由时间格式转变为字符串格式.字段名为 sort_time 现在将他们按照倒序排列
sorted 的用法

sorted(iterable, cmp=None, key=None, reverse=False) –> new sorted list terable:是可迭代类型; cmp:用于比较的函数,比较什么由key决定,有默认值,迭代集合中的一项; key:用列表元素的某个属性和函数进行作为关键字,有默认值,迭代集合中的一项; reverse:排序规则. reverse = True 或者 reverse = False,有默认值。 * 返回值:是一个经过排序的可迭代类型,与iterable一样。
sorted()结合lambda对可迭代类型用sort_time排序

sorted(data, key=lambda d: d['sort_time'], reverse=True)
目录
相关文章
|
22天前
|
存储 Python
SciPy 教程 之 SciPy 稀疏矩阵 4
SciPy 教程之 SciPy 稀疏矩阵 4:介绍稀疏矩阵的概念、类型及其在科学计算中的应用。SciPy 的 `scipy.sparse` 模块提供了处理稀疏矩阵的工具,重点讲解了 CSC 和 CSR 两种格式,并通过示例演示了如何创建和操作 CSR 矩阵。
42 3
|
8天前
|
BI Python
SciPy 教程 之 Scipy 显著性检验 8
本教程介绍SciPy中显著性检验的应用,包括如何利用scipy.stats模块进行显著性检验,以判断样本与总体假设间的差异是否显著。通过示例代码展示了如何使用describe()函数获取数组的统计描述信息,如观测次数、最小最大值、均值、方差等。
19 1
|
9天前
|
Python
SciPy 教程 之 Scipy 显著性检验 6
显著性检验是统计学中用于判断样本与总体假设间是否存在显著差异的方法。SciPy的scipy.stats模块提供了执行显著性检验的工具,如T检验,用于比较两组数据的均值是否来自同一分布。通过ttest_ind()函数,可以获取两样本的t统计量和p值,进而判断差异是否显著。示例代码展示了如何使用该函数进行T检验并输出结果。
14 1
|
12天前
|
Python
探索Python中的列表推导式
【10月更文挑战第38天】本文深入探讨了Python中强大而简洁的编程工具——列表推导式。从基础使用到高级技巧,我们将一步步揭示如何利用这个特性来简化代码、提高效率。你将了解到,列表推导式不仅仅是编码的快捷方式,它还能帮助我们以更加Pythonic的方式思考问题。准备好让你的Python代码变得更加优雅和高效了吗?让我们开始吧!
|
11天前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
20 1
|
13天前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 插值 2
SciPy插值教程:介绍插值概念及其在数值分析中的应用,特别是在处理数据缺失时的插补和平滑数据集。SciPy的`scipy.interpolate`模块提供了强大的插值功能,如一维插值和样条插值。通过`UnivariateSpline()`函数,可以轻松实现单变量插值,示例代码展示了如何对非线性点进行插值计算。
18 3
|
16天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 空间数据 4
本教程介绍了SciPy的空间数据处理功能,主要通过scipy.spatial模块实现。内容涵盖空间数据的基本概念、距离矩阵的定义及其在生物信息学中的应用,以及如何计算欧几里得距离。示例代码展示了如何使用SciPy计算两点间的欧几里得距离。
31 5
|
15天前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 空间数据 6
本教程介绍了SciPy处理空间数据的方法,包括使用scipy.spatial模块进行点位置判断、最近点计算等内容。还详细讲解了距离矩阵的概念及其应用,如在生物信息学中表示蛋白质结构等。最后,通过实例演示了如何计算两点间的余弦距离。
26 3
|
14天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 空间数据 7
本教程介绍了SciPy的空间数据处理功能,涵盖如何使用`scipy.spatial`模块进行点的位置判断、最近点计算等操作。还详细解释了距离矩阵的概念及其在生物信息学中的应用,以及汉明距离的定义和计算方法。示例代码展示了如何计算两个点之间的汉明距离。
25 1
|
18天前
|
Python
SciPy 教程 之 SciPy 图结构 7
《SciPy 教程 之 SciPy 图结构 7》介绍了 SciPy 中处理图结构的方法。图是由节点和边组成的集合,用于表示对象及其之间的关系。scipy.sparse.csgraph 模块提供了多种图处理功能,如 `breadth_first_order()` 方法可按广度优先顺序遍历图。示例代码展示了如何使用该方法从给定的邻接矩阵中获取广度优先遍历的顺序。
27 2
下一篇
无影云桌面