4 Things You Can Do with Alibaba Cloud PolarDB

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: In this article, we spoke with He Jun, Alibaba Cloud Technical Expert, to learn about the key features and common use cases of PolarDB.

During the PolarDB session of the 2017 Computing Conference, Alibaba Cloud's high level Technical Expert He Jun delivered a speech on the features and common use cases of PolarDB. In his speech, He Jun discussed the structure of PolarDB, introduced its features, and finally shared insights on some common use cases.

The following sections highlights the main points from his speech.

Product Architecture

I was pleasantly surprised when I first encountered PolarDB, as in my understanding, it represents a cross-generational milestone product that combines innovations in computing, storage, networking, and more. It implements a new design concept called Cloud Native, which is far different from the database design concepts we spoke about before. The earliest relation to modern databases is the relational database produced by the computing power available in the IT era. However, while moving computing capability onto the publicly accessible cloud and connecting it to user businesses generated a number of new innovations, they are far from sufficient in the long term. Why? Today, we are required to develop a cloud-based relational database targeted at public cloud environments and the user businesses that run in them. This is no small task.

PolarDB utilizes a structure that separates computing and storage, which is much easier said than done. The reason for combining computing and storage, after all, is to improve performance. The primary consideration in building a relational database is performance, so while separating storage and computing seems like an easy concept, actually doing it without sacrificing performance is quite difficult.

Today, the separation of computing and storage in PolarDB is a bold innovation that's no longer stuck in the concept phase, but has been both realized and implemented. Where is the difficulty in building a relational database? It needs to be compatible with ACID semantics, otherwise it will be unable to support business situations that require online operations. If ACID compatibility, performance, and flexibility on the public cloud are all crucial, then we also need to take into consideration performance to cost ratio. Looking at commercial databases on the market, most of them are more or less a fantasy. Is it even possible to combine all required functionality, capability, and acceptable performance to cost ratio in a framework that sufficiently supports all necessary business scenarios? We have, through superior understanding of business applications and accumulated experience on the public cloud, implemented a single write multiple read database framework to significantly simplify the complexity of previous multiple write databases. Furthermore, we are able to satisfy the needs of the vast majority of use cases. We have implemented a proprietary distributed storage engine as the core of our arsenal, allowing PolarDB to provide flexibility on multiple dimensions.

1

The system has three layers, as we can see in this figure. The top layer is DBserver, which implements a single master, multiple slave framework whereby other nodes are able to expand or contract as needed to support any request. The lowest layer is distributed, fast storage devices.

PolarDB Features

What makes PolarDB special? First, a relational database absolutely must have high performance. If a relational database has poor performance, it will have difficulty satisfying the need to process the explosive growth of data characteristic of the current Internet era. So when I say that PolarDB performance is high, what exactly does that mean?

  • High speed Single Point QBS can easily reach 500,000
    Because PolarDB uses shared distributed storage, performance when adding a new read-only node is quite high, and when sharing data, we don't have to add a new read-only instance and replicate the data. This reduces overhead from replicating data, as adding a new read-only instance only takes 1-5 minutes. It is also completely unaffected by the size of the data in the database. What's more, with a single master multiple read structure, we are able to keep latency down to a matter of milliseconds. We can also create backups in seconds. Each of these functions features extremely high performance.
  • Super high capacity
    Using data to a certain point, it seems that once the size reaches around 2TB most databases become useless. Today, PolarDB is capable of providing capacity of up to 100TB, which, from the perspective of relational frameworks, is an enormous amount of data.
  • Automatic scaling according to necessity
    The PolarDB data structure makes full use of the flexibility offered by the cloud, enabling the system to scale flexibly according to changes in the user's application.
  • MySQL compatibility
    There are already more open source database instances combined than Oracle instances, and this trend is increasing every year. We are already nearing 100% compatibility, and will continue to improve support for SQL standards as quickly as possible.
  • High reliability and availability
    PolarDB uses a one master many slaves framework, which naturally offers high availability. If the master node crashes, it will automatically be directed to the command node. At the same time, the existence of multiple data copies means that the data is naturally more reliable.

PolarDB in Production Scenarios

2

When talking about the capabilities of PolarDB as a product, remember that the birth of a product, its value, and its reputation, are all dependent on the services it provides. If users don't use it and it doesn't solve pain points in their application scenarios, then it's difficult to say that the product has any value at all. For a user on the public cloud, the product must first take into consideration whether or not a cloud database can solve the user's needs. If I have a new service, or even an existing service that I want to move to the cloud, then I want to use a database with a high performance to cost ratio, and it should be a next gen database. Moving my data to the cloud involves the cost of migrating all of my users to the cloud as well.

This migration cost is quite low if all users are very easy to migrate. However, if migrating users involves changing business procedures, then the process becomes quite painful and brings with it hidden dangers according to what the user does. We have to provide strong performance if we are to satisfy the needs of high end users. From business to the cloud, I trust the public cloud, and in turn Alibaba Cloud. When you provide services 24/7, you can't afford any interruptions. As users increase, it becomes crucially important that your database be flexible enough, expandable enough to satisfy the needs of every business scenario.

Finally, data must be reliable. It is only once these needs are met that a database service is able to provide real value to the user. Next I will introduce and analyze four use cases to illustrate the capabilities and services offered by PolarDB.

Use Case 1: High Throughput Processing of Big Data

3

High throughput processing capability of large data volumes. In its earliest days, the public cloud serviced website users. As the public cloud improved and software on it continued to evolve, it gradually grew to become something very different. With the introduction of large users, medium users, and even smaller users with high growth potential, the services and data running on the cloud have become exponentially larger. We know that, in the mobile Internet era, data is used not only to solve users' needs, but it may very well become much more important, serving as a balance between supply and demand. Because of today's calculations, we know how to increase production efficiency, and as production becomes more and more efficient, so does the efficiency of user service scenarios as well as performance to cost ratios. Because we have gathered knowledge of user needs by servicing them and collecting their data, we have a much better understanding of what we need to provide. This allows us to react to changing needs and even become aware of changes in the collected data itself. Data has the possibility of changing the balance between supply and demand, which is a major contribution of the big data era. As data grows infinitely, databases become the supporting computing power that enables commercial civilization on the backend. Similarly, with the addition of data, the database requires more computing power to be able to process and utilize the data.

We utilize an architecture that separates reads and writes in order to accommodate more user processing systems. At the same time, we implement a shared storage system that allows us to provide storage of over 100TB and respond to the explosive growth of web-scale data.

Use Case 2: High Availability and Business Flexibility

4

A few years ago, when I was a developer, I was involved in developing high availability software. At the time, we wanted to install open source MySQL with two single nodes, purchase another piece of high availability software, and learn how to configure it in order to make the LAMP architecture highly available on two machines. Today, on the public cloud, we can use technology at a lower cost, and use it to serve more users cheaply. The value brought by the cloud is enormous.

Looking at this image, we see that when the CPU and memory on a computing node in PolarDB is insufficient, we can quickly and easily expand accordingly. Today we can use a shared storage framework to scale up or scale in. When there aren't many read tasks, we can even delete some read nodes. Because of today's competition, marketing, and changes in the Internet ecology, the time frame for our services could be reduced to a matter of hours or even minutes. For example, in e-commerce you sometimes have to deal with bid sniping, where data could surge in just an hour. However, if we're able to add a read-only node each minute, this kind of load poses much less of a problem.

Use Case 3: Cloudification and Migration

5

When something new and more advanced comes on the market, we naturally want to give it a try, but that becomes quite difficult if we have to change our business processes. If we have MySQL compatibility, then putting our business on the cloud is quite simple. Then, if we use cloudification tools and perform logical migration, then the entire cloudification and cloud migration process is quite smooth.

Today we have already entered an age of cloud computing, IoT, and artificial intelligence. Before, we used to say that the Internet would move from online to offline, maybe some traditional businesses would move to the cloud, and maybe artificial intelligence would open up new forms of business. It's possible that industry + the Internet will embrace the high performance to cost ratio, flexible, easily deployable cloud. With these kinds of migration tools, issues of compatibility are easily solved and the cost of the entire process of migrating to the cloud is reduced greatly.

Use Case 4: High Reliability and Backups for Disaster Recovery

6

The last point is high reliability and backups for disaster recovery. The above diagram shows a framework diagram of PolarDB with PolarDB as a cluster architecture on the DBserver layer. For a cluster architecture, network connectivity can be considered a mission critical application service. Because of PolarDB's high reliability, it is ideal to be used for backups and disaster recovery scenarios.

Conclusion

Looking back, as I have personally come to understand PolarDB, I see it as a database product that combines imagination with creativity and adaptability. We believe that the spirit of PolarDB is one of faith combined with hard work and effort, and that is why we are able to present such a product to you all today.

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
关系型数据库 MySQL 分布式数据库
The Evolution of Alibaba Cloud's Relational Database Services Architecture – PolarDB
This article discusses the history of Alibaba Cloud's RDS architecture, as well as the motivation behind the development of PolarDB.
4844 0
The Evolution of Alibaba Cloud's Relational Database Services Architecture – PolarDB
|
固态存储 关系型数据库 分布式数据库
100TB Capacity and 6x Performance Improvement with Alibaba Cloud PolarDB
This article focuses on the optimizations of Alibaba Cloud PolarDB's compute and storage engines to offer an unparalleled performance.
5947 0
100TB Capacity and 6x Performance Improvement with Alibaba Cloud PolarDB
|
7天前
|
Cloud Native 关系型数据库 分布式数据库
让PolarDB更了解您--PolarDB云原生数据库核心功能体验馆
让PolarDB更了解您——PolarDB云原生数据库核心功能体验馆,由阿里云数据库产品事业部负责人宋震分享。内容涵盖PolarDB技术布局、开源进展及体验馆三大部分。技术布局包括云计算加速数据库演进、数据处理需求带来的变革、软硬协同优化等;开源部分介绍了兼容MySQL和PostgreSQL的两款产品;体验馆则通过实际操作让用户直观感受Serverless、无感切换、SQL2Map等功能。
|
3月前
|
关系型数据库 MySQL 分布式数据库
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶!
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶,邀请好友完成更有机会获得​小米Watch S3、小米体重称​等诸多好礼!
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶!
|
3天前
|
存储 关系型数据库 分布式数据库
PolarDB PostgreSQL版:商业数据库替换与企业上云首选
PolarDB PostgreSQL版是商业数据库替换与企业上云的首选。其技术架构实现存储计算分离,具备极致弹性和扩展性,支持Serverless、HTAP等特性。产品在弹性、性能、成本优化和多模处理方面有显著提升,如冷热数据自动分层、Ganos多模引擎等。已在汽车、交通、零售等行业成功应用,典型案例包括小鹏汽车、中远海科等,帮助企业大幅降低运维成本并提高业务效率。
26 13
|
3天前
|
容灾 关系型数据库 分布式数据库
PolarDB分布式版:与云融合的分布式数据库发展新阶段
PolarDB分布式版标志着分布式数据库与云融合的新阶段。它经历了三个发展阶段:从简单的分布式中间件,到一体化分布式架构,再到云原生分布式数据库。PolarDB充分利用云资源的弹性、高性价比、高可用性和隔离能力,解决了大规模数据扩展性问题,并支持多租户场景和复杂事务处理。零售中台的建设背景包括国家数字化转型战略及解决信息孤岛问题,采用分布式数据库提升高可用性和性能,满足海量订单处理需求。展望未来,零售中台将重点提升容灾能力、优化资源利用并引入AI技术,以实现更智能的服务和更高的业务连续性。
|
5天前
|
关系型数据库 分布式数据库 数据库
瑶池数据库大讲堂|PolarDB HTAP:为在线业务插上实时分析的翅膀
瑶池数据库大讲堂介绍PolarDB HTAP,为在线业务提供实时分析能力。内容涵盖MySQL在线业务的分析需求与现有解决方案、PolarDB HTAP架构优化、针对分析型负载的优化(如向量化执行、多核并行处理)及近期性能改进和用户体验提升。通过这些优化,PolarDB HTAP实现了高效的数据处理和查询加速,帮助用户更好地应对复杂业务场景。
|
3天前
|
运维 关系型数据库 分布式数据库
阿里云PolarDB:引领云原生数据库创新发展
阿里云PolarDB引领云原生数据库创新,2024云栖大会将分享其最新发展及在游戏行业的应用。PolarDB凭借弹性、高可用性、多写技术等优势,支持全球80多个站点,服务1万多家企业。特别是针对游戏行业,PolarDB助力Funplus等公司实现高效运维、成本优化和业务扩展。通过云原生能力,PolarDB推动游戏业务的全球化部署与快速响应,提升用户体验并保障数据安全。未来,PolarDB将继续探索AI、多云管理等前沿技术,为用户提供更智能的数据基础设施。
|
6天前
|
关系型数据库 Serverless 分布式数据库
瑶池数据库微课堂 | PolarDB Serverless弹性&价格力观测
瑶池数据库微课堂介绍阿里云PolarDB Serverless的弹性与性价比优势。通过瑶池解决方案体验馆,用户可免费实操,直观感受Serverless的秒级弹性及超高性价比。内容涵盖Serverless概念、操作步骤、压测演示及性能曲线分析,展示PolarDB在不同负载下的自动扩展能力。适合希望了解云数据库弹性和成本效益的技术人员。
|
6天前
|
关系型数据库 OLAP 分布式数据库
瑶池数据库微课堂|PolarDB/RDS+ADB Zero-ETL:一种免费、易用、高效的数据同步方式
瑶池数据库微课堂介绍阿里云PolarDB/RDS与ADB的Zero-ETL功能,实现免费、易用、高效的数据同步。内容涵盖OLTP与OLAP的区别、传统ETL存在的问题及Zero-ETL的优势(零成本、高效同步),并演示了从RDS MySQL到AnalyticDB MySQL的具体操作步骤。未来将优化和迭代此功能,提供更好的用户体验。