Renascence架构原理——最优化算法

简介: 最优化算法背景通过公式生成ADF之后,根据下层函数库的配置,在结构不变的情形下,ADF是可以通过一系列值在0-1之间的参数进行调节的。也即ADF可表示为固定维数n的实数集,因此需要解决的问题就是在给定的目标下,求一组使目标值最大的参数。 max(f(x0,x1,x2,x3,...,xn)),xi∈[0,1]max(f(x_0, x_1, x_2, x_3, .

最优化算法

背景

通过公式生成ADF之后,根据下层函数库的配置,在结构不变的情形下,ADF是可以通过一系列值在0-1之间的参数进行调节的。也即ADF可表示为固定维数n的实数集,因此需要解决的问题就是在给定的目标下,求一组使目标值最大的参数。

max(f(x0,x1,x2,x3,...,xn)),xi[0,1]

由于架构本身并不知道ADF运行的函数实现,因此目标函数是完全未知的,无法用梯度下降/牛顿迭代法等处理,更不用说线性规划的那些解法了。

这时候可选择的,就是穷举法或启发式算法。

最优化算法

穷举——网格搜索

学过支持向量机SVM的人应该都瞄过这个算法,是用来优化RBF核中的两个参数的。
很简单的一个算法,设定精度,n层for循环穷举所有的参数值即可。
直接写段代码说明吧:

//精度设为0.001,两个参数
double maxP = 0.0;
double max_x0 = -1;
double max_x1 = -1;
for (double x0=0.0; x0<=1.0; x0+=0.001)
{
    for (double x1=0.0; x1<=1.0; x1+=0.001)
    {
        double currentP = f(x0, x1);
        if (currentP > maxP)
        {
            maxP = currentP;
            max_x0 = x0;
            max_x1 = x1;
        }
    }
}

在具体实现时,由于n是可变的,不能直接写n个for循环,需要用一个进位算法实现,不详述。

全随机——蒙特卡洛算法

完全随机地取若干组参数值,然后取其中最大的一组。

目录
相关文章
|
1月前
|
存储 运维 监控
基于 C# 语言的 Dijkstra 算法在局域网内监控软件件中的优化与实现研究
本文针对局域网监控系统中传统Dijkstra算法的性能瓶颈,提出了一种基于优先队列和邻接表优化的改进方案。通过重构数据结构与计算流程,将时间复杂度从O(V²)降至O((V+E)logV),显著提升大规模网络环境下的计算效率与资源利用率。实验表明,优化后算法在包含1000节点、5000链路的网络中,计算时间缩短37.2%,内存占用减少21.5%。该算法适用于网络拓扑发现、异常流量检测、故障定位及负载均衡优化等场景,为智能化局域网监控提供了有效支持。
56 5
|
29天前
|
消息中间件 存储 缓存
zk基础—1.一致性原理和算法
本文详细介绍了分布式系统的特点、理论及一致性算法。首先分析了分布式系统的五大特点:分布性、对等性、并发性、缺乏全局时钟和故障随时发生。接着探讨了分布式系统理论,包括CAP理论(一致性、可用性、分区容错性)和BASE理论(基本可用、软状态、最终一致性)。文中还深入讲解了两阶段提交(2PC)与三阶段提交(3PC)协议,以及Paxos算法的推导过程和核心思想,强调了其在ZooKeeper中的应用。最后简述了ZAB算法,指出其通过改编的两阶段提交协议确保节点间数据一致性,并在Leader故障时快速恢复服务。这些内容为理解分布式系统的设计与实现提供了全面的基础。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
11天前
|
算法 调度
基于精英个体保留策略遗传优化的生产调度算法matlab仿真
本程序基于精英个体保留策略的遗传算法,实现生产调度优化。通过MATLAB仿真,输出收敛曲线与甘特图,直观展示调度结果与迭代过程。适用于复杂多约束生产环境,提升资源利用率与调度效率。
|
13天前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
35 4
|
28天前
|
算法
基于BigBangBigCrunch优化(BBBC)的目标函数求解算法matlab仿真
本程序基于BigBang-BigCrunch优化算法(BBBC)实现目标函数求解的MATLAB仿真,具备良好的全局搜索与局部收敛能力。程序输出适应度收敛曲线及多变量变化曲线,展示算法迭代过程中的优化趋势。使用MATLAB 2022A运行,通过图形界面直观呈现“大爆炸”与“大坍缩”阶段在解空间中的演化过程,适用于启发式优化问题研究与教学演示。
|
20天前
|
缓存 Java 数据库
Java 项目分层架构实操指南及长尾关键词优化方案
本指南详解基于Spring Boot与Spring Cloud的Java微服务分层架构,以用户管理系统为例,涵盖技术选型、核心代码实现、服务治理及部署实践,助力掌握现代化Java企业级开发方案。
55 2
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问