在3月29日深圳云栖大会的数据分析与可视化专场中,阿里云产品专家陌停对大数据智能分析产品 Quick BI 进行了深入的剖析。大会现场的精彩分享也赢得观众们的一直认可和热烈的反响。
大数据分析之路的挑战与期望
阿里巴巴作为一家大数据公司,整个集团,从上到下都在践行数字化运营。传统的大数据分析之路,正面临着临时需求多、需求响应时间长、本地化现象严重、专业人才紧缺等挑战,急需构建一个面向业务人员的自助式大数据分析工具,让业务人员自助式实现在线数据分析,助力企业业务的数据化。
Quick BI核心能力
一、如何保障高性能即席查询
大数据分析的三要素是人、数据、计算与存储,而计算存储作为大数据分析的基础能力。Quick BI兼容Oracle 、Mysql等关系数据库,来支撑小数据集的分析与处理,也兼容Hadoop等分布式数据库和云数据库。Quick BI无缝兼容阿里云数据库,包括Maxcopute、Analytic DB等数据库,能做到100G数据15秒内实现汇总与查询。
二、如何降低专业人才依赖
- 拖拽式自助分析
贴合数据人员的数据分析思维,提供查询联动、组件联动分析、下钻联动分析等能力,并基于图表组件实现拖拽式的可视化配置能力,让无技术的业务员可以自助式实现在线大数据分析与可视化。
- 在线电子表格
打造在线电子表格能力,提供类似Excel的拖拽式、筛选、冻结及300+函数,完全演戏Excel的操作习惯,降低业务人员的学习成本,提升数据分析能力。
三、如何保障数据访问安全
数据本身辐射的群体是有限的,基于工作空间隔离的概念,实现基于工作空间组的在线协同分析机制。基于空间角色实现功能操作的管控,实现了最细粒度的行级数据访问控制。
大数据行业分析案例
Quick BI已经广泛应用于零售、金融、互联网、媒体、医疗健康、通讯等行业,并期待着与更多领域的企业开展合作。以两个行业应用案例为切入点,阐述Quick BI的给企业赋能的价值。我们不仅仅提供大数据分析与可视化的工具,同时也将大数据分析的思维方式和手段赋能给企业。
持续创新
Quick BI是一款不断更新与迭代的产品,我们以“降低技术要求、解决存储计算、智能业务感知” 的目标,致力于打造大数据分析的新生态,实现人人都是分析师,助力企业业务数据化。