Presto实现原理(转)

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: Presto架构 Presto查询引擎是一个Master-Slave的架构,由一个Coordinator节点,一个Discovery Server节点,多个Worker节点组成,Discovery Server通常内嵌于Coordinator节点中。Coordinator负责解析SQL语句,生

Presto架构

 presto架构图

Presto查询引擎是一个Master-Slave的架构,由一个Coordinator节点,一个Discovery Server节点,多个Worker节点组成,Discovery Server通常内嵌于Coordinator节点中。Coordinator负责解析SQL语句,生成执行计划,分发执行任务给Worker节点执行。Worker节点负责实际执行查询任务。Worker节点启动后向Discovery Server服务注册,Coordinator从Discovery Server获得可以正常工作的Worker节点。如果配置了Hive Connector,需要配置一个Hive MetaStore服务为Presto提供Hive元信息,Worker节点与HDFS交互读取数据。

Presto执行查询过程简介

既然Presto是一个交互式的查询引擎,我们最关心的就是Presto实现低延时查询的原理,我认为主要是下面几个关键点,当然还有一些传统的SQL优化原理,这里不介绍了。

  1. 完全基于内存的并行计算
  2. 流水线
  3. 本地化计算
  4. 动态编译执行计划
  5. 小心使用内存和数据结构
  6. 类BlinkDB的近似查询
  7. GC控制

为了介绍上述几个要点,这里先介绍一下Presto执行查询的过程

提交查询

用户使用Presto Cli提交一个查询语句后,Cli使用HTTP协议与Coordinator通信,Coordinator收到查询请求后调用SqlParser解析SQL语句得到Statement对象,并将Statement封装成一个QueryStarter对象放入线程池中等待执行。

 提交查询

SQL编译过程

Presto与Hive一样,使用Antlr编写SQL语法,语法规则定义在Statement.g和StatementBuilder.g两个文件中。
如下图中所示从SQL编译为最终的物理执行计划大概分为5部,最终生成在每个Worker节点上运行的LocalExecutionPlan,这里不详细介绍SQL解析为逻辑执行计划的过程,通过一个SQL语句来理解查询计划生成之后的计算过程。

 SQL解析过程

样例SQL:

select c1.rank, count(*) from dim.city c1 join dim.city c2 on c1.id = c2.id where c1.id > 10 group by c1.rank limit 10;

 逻辑执行计划

上面的SQL语句生成的逻辑执行计划Plan如上图所示。那么Presto是如何对上面的逻辑执行计划进行拆分以较高的并行度去执行完这个计划呢,我们来看看物理执行计划。

物理执行计划

逻辑执行计划图中的虚线就是Presto对逻辑执行计划的切分点,逻辑计划Plan生成的SubPlan分为四个部分,每一个SubPlan都会提交到一个或者多个Worker节点上执行。

SubPlan有几个重要的属性planDistribution、outputPartitioning、partitionBy属性。

  1. PlanDistribution表示一个查询Stage的分发方式,逻辑执行计划图中的4个SubPlan共有3种不同的PlanDistribution方式:Source表示这个SubPlan是数据源,Source类型的任务会按照数据源大小确定分配多少个节点进行执行;Fixed表示这个SubPlan会分配固定的节点数进行执行(Config配置中的query.initial-hash-partitions参数配置,默认是8);None表示这个SubPlan只分配到一个节点进行执行。在下面的执行计划中,SubPlan1和SubPlan0 PlanDistribution=Source,这两个SubPlan都是提供数据源的节点,SubPlan1所有节点的读取数据都会发向SubPlan0的每一个节点;SubPlan2分配8个节点执行最终的聚合操作;SubPlan3只负责输出最后计算完成的数据。
  2. OutputPartitioning属性只有两个值HASH和NONE,表示这个SubPlan的输出是否按照partitionBy的key值对数据进行Shuffle。在下面的执行计划中只有SubPlan0的OutputPartitioning=HASH,所以SubPlan2接收到的数据是按照rank字段Partition后的数据。

 物理执行计划

完全基于内存的并行计算

查询的并行执行流程

Presto SQL的执行流程如下图所示

  1. Cli通过HTTP协议提交SQL查询之后,查询请求封装成一个SqlQueryExecution对象交给Coordinator的SqlQueryManager#queryExecutor线程池去执行
  2. 每个SqlQueryExecution线程(图中Q-X线程)启动后对查询请求的SQL进行语法解析和优化并最终生成多个Stage的SqlStageExecution任务,每个SqlStageExecution任务仍然交给同样的线程池去执行
  3. 每个SqlStageExecution线程(图中S-X线程)启动后每个Stage的任务按PlanDistribution属性构造一个或者多个RemoteTask通过HTTP协议分配给远端的Worker节点执行
  4. Worker节点接收到RemoteTask请求之后,启动一个SqlTaskExecution线程(图中T-X线程)将这个任务的每个Split包装成一个PrioritizedSplitRunner任务(图中SR-X)交给Worker节点的TaskExecutor#executor线程池去执行

 查询执行流程

上面的执行计划实际执行效果如下图所示。

  1. Coordinator通过HTTP协议调用Worker节点的 /v1/task 接口将执行计划分配给所有Worker节点(图中蓝色箭头)
  2. SubPlan1的每个节点读取一个Split的数据并过滤后将数据分发给每个SubPlan0节点进行Join操作和Partial Aggr操作
  3. SubPlan1的每个节点计算完成后按GroupBy Key的Hash值将数据分发到不同的SubPlan2节点
  4. 所有SubPlan2节点计算完成后将数据分发到SubPlan3节点
  5. SubPlan3节点计算完成后通知Coordinator结束查询,并将数据发送给Coordinator

 执行计划计算流程

源数据的并行读取

在上面的执行计划中SubPlan1和SubPlan0都是Source节点,其实它们读取HDFS文件数据的方式就是调用的HDFS InputSplit API,然后每个InputSplit分配一个Worker节点去执行,每个Worker节点分配的InputSplit数目上限是参数可配置的,Config中的query.max-pending-splits-per-node参数配置,默认是100。

分布式的Hash聚合

上面的执行计划在SubPlan0中会进行一次Partial的聚合计算,计算每个Worker节点读取的部分数据的部分聚合结果,然后SubPlan0的输出会按照group by字段的Hash值分配不同的计算节点,最后SubPlan3合并所有结果并输出

流水线

数据模型

Presto中处理的最小数据单元是一个Page对象,Page对象的数据结构如下图所示。一个Page对象包含多个Block对象,每个Block对象是一个字节数组,存储一个字段的若干行。多个Block横切的一行是真实的一行数据。一个Page最大1MB,最多16*1024行数据。

 数据模型

节点内部流水线计算

下图是一个Worker节点内部的计算流程图,左侧是任务的执行流程图。

Worker节点将最细粒度的任务封装成一个PrioritizedSplitRunner对象,放入pending split优先级队列中。每个

Worker节点启动一定数目的线程进行计算,线程数task.shard.max-threads=availableProcessors() * 4,在config中配置。

每个空闲的线程从队列中取出一个PrioritizedSplitRunner对象执行,如果执行完成一个周期,超过最大执行时间1秒钟,判断任务是否执行完成,如果完成,从allSplits队列中删除,如果没有,则放回pendingSplits队列中。

每个任务的执行流程如下图右侧,依次遍历所有Operator,尝试从上一个Operator取一个Page对象,如果取得的Page不为空,交给下一个Operator执行。

 节点内部流水线计算

节点间流水线计算

下图是ExchangeOperator的执行流程图,ExchangeOperator为每一个Split启动一个HttpPageBufferClient对象,主动向上一个Stage的Worker节点拉数据,数据的最小单位也是一个Page对象,取到数据后放入Pages队列中

 节点间流水线计算

本地化计算

Presto在选择Source任务计算节点的时候,对于每一个Split,按下面的策略选择一些minCandidates

  1. 优先选择与Split同一个Host的Worker节点
  2. 如果节点不够优先选择与Split同一个Rack的Worker节点
  3. 如果节点还不够随机选择其他Rack的节点

对于所有Candidate节点,选择assignedSplits最少的节点。

动态编译执行计划

Presto会将执行计划中的ScanFilterAndProjectOperator和FilterAndProjectOperator动态编译为Byte Code,并交给JIT去编译为native代码。Presto也使用了Google Guava提供的LoadingCache缓存生成的Byte Code。

 动态编译执行计划

 动态编译执行计划

上面的两段代码片段中,第一段为没有动态编译前的代码,第二段代码为动态编译生成的Byte Code反编译之后还原的优化代码,我们看到这里采用了循环展开的优化方法。

循环展开最常用来降低循环开销,为具有多个功能单元的处理器提供指令级并行。也有利于指令流水线的调度。

小心使用内存和数据结构

使用Slice进行内存操作,Slice使用Unsafe#copyMemory实现了高效的内存拷贝,Slice仓库参考:https://github.com/airlift/slice

Facebook工程师在另一篇介绍ORCFile优化的文章中也提到使用Slice将ORCFile的写性能提高了20%~30%,参考:https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/

类BlinkDB的近似查询

为了加快avg、count distinct、percentile等聚合函数的查询速度,Presto团队与BlinkDB作者之一Sameer Agarwal合作引入了一些近似查询函数approx_avg、approx_distinct、approx_percentile。approx_distinct使用HyperLogLog Counting算法实现。

GC控制

Presto团队在使用hotspot java7时发现了一个JIT的BUG,当代码缓存快要达到上限时,JIT可能会停止工作,从而无法将使用频率高的代码动态编译为native代码。

Presto团队使用了一个比较Hack的方法去解决这个问题,增加一个线程在代码缓存达到70%以上时进行显式GC,使得已经加载的Class从perm中移除,避免JIT无法正常工作的BUG。

Presto TPCH benchmark测试

介绍了上述这么多点,我们最关心的还是Presto性能测试,Presto中实现了TPCH的标准测试,下面的表格给出了Presto 0.60 TPCH的测试结果。直接运行presto-main/src/test/java/com/facebook/presto/benchmark/BenchmarkSuite.java

benchmarkName cpuNanos(MILLISECONDS) inputRows inputBytes inputRows/s inputBytes/s outputRows outputBytes outputRows/s outputBytes/s
                      count_agg     2.055ms   1.5M  12.9MB    730M/s  6.12GB/s      1      9B     486/s  4.28KB/s
                 double_sum_agg    14.792ms   1.5M  12.9MB    101M/s   870MB/s      1      9B      67/s    608B/s
                       hash_agg   174.576ms   1.5M  21.5MB   8.59M/s   123MB/s      3     45B      17/s    257B/s
               predicate_filter    68.387ms   1.5M  12.9MB   21.9M/s   188MB/s  1.29M  11.1MB   18.8M/s   162MB/s
                     raw_stream     1.899ms   1.5M  12.9MB    790M/s  6.62GB/s   1.5M  12.9MB    790M/s  6.62GB/s
                         top100    58.735ms   1.5M  12.9MB   25.5M/s   219MB/s    100    900B    1.7K/s    15KB/s
         in_memory_orderby_1.5M  1909.524ms   1.5M  41.5MB    786K/s  21.7MB/s   1.5M  28.6MB    786K/s    15MB/s
                     hash_build   588.471ms   1.5M  25.7MB   2.55M/s  43.8MB/s   1.5M  25.7MB   2.55M/s  43.8MB/s
                      hash_join  2400.006ms     6M   103MB    2.5M/s  42.9MB/s     6M   206MB    2.5M/s  85.8MB/s
            hash_build_and_join  2996.489ms   7.5M   129MB    2.5M/s    43MB/s     6M   206MB      2M/s  68.8MB/s
              hand_tpch_query_1  3146.931ms     6M   361MB   1.91M/s   115MB/s      4    300B       1/s     95B/s
              hand_tpch_query_6   345.960ms     6M   240MB   17.3M/s   695MB/s      1      9B       2/s     26B/s
sql_groupby_agg_with_arithmetic  1211.444ms     6M   137MB   4.95M/s   113MB/s      2     30B       1/s     24B/s
                  sql_count_agg     3.635ms   1.5M  12.9MB    413M/s  3.46GB/s      1      9B     275/s  2.42KB/s
             sql_double_sum_agg    16.960ms   1.5M  12.9MB   88.4M/s   759MB/s      1      9B      58/s    530B/s
          sql_count_with_filter    81.641ms   1.5M  8.58MB   18.4M/s   105MB/s      1      9B      12/s    110B/s
                sql_groupby_agg   169.748ms   1.5M  21.5MB   8.84M/s   126MB/s      3     45B      17/s    265B/s
           sql_predicate_filter    46.540ms   1.5M  12.9MB   32.2M/s   277MB/s  1.29M  11.1MB   27.7M/s   238MB/s
                 sql_raw_stream     3.374ms   1.5M  12.9MB    445M/s  3.73GB/s   1.5M  12.9MB    445M/s  3.73GB/s
                    sql_top_100    60.663ms   1.5M  12.9MB   24.7M/s   212MB/s    100    900B   1.65K/s  14.5KB/s
                  sql_hash_join  4421.159ms   7.5M   129MB    1.7M/s  29.1MB/s     6M   206MB   1.36M/s  46.6MB/s
        sql_join_with_predicate  1008.909ms   7.5M   116MB   7.43M/s   115MB/s      1      9B       0/s      8B/s
              sql_varbinary_max   224.510ms     6M  97.3MB   26.7M/s   433MB/s      1     21B       4/s     93B/s
             sql_distinct_multi   257.958ms   1.5M    32MB   5.81M/s   124MB/s      5    112B      19/s    434B/s
            sql_distinct_single   112.849ms   1.5M  12.9MB   13.3M/s   114MB/s      1      9B       8/s     79B/s
               sql_tpch_query_1  3168.782ms     6M   361MB   1.89M/s   114MB/s      4    336B       1/s    106B/s
               sql_tpch_query_6   286.281ms     6M   240MB     21M/s   840MB/s      1      9B       3/s     31B/s
                       sql_like  3497.154ms     6M   232MB   1.72M/s  66.3MB/s  1.15M  9.84MB    328K/s  2.81MB/s
                         sql_in    80.267ms     6M  51.5MB   74.8M/s   642MB/s     25    225B     311/s  2.74KB/s
                sql_semijoin_in  1945.074ms   7.5M  64.4MB   3.86M/s  33.1MB/s     3M  25.8MB   1.54M/s  13.2MB/s
                sql_regexp_like  2233.004ms   1.5M  76.6MB    672K/s  34.3MB/s      1      9B       0/s      4B/s
     sql_approx_percentile_long   587.748ms   1.5M  12.9MB   2.55M/s  21.9MB/s      1      9B       1/s     15B/s
               sql_between_long    53.433ms   1.5M  12.9MB   28.1M/s   241MB/s      1      9B      18/s    168B/s
sampled_sql_groupby_agg_with_arithmetic  1369.485ms    6M   189MB   4.38M/s   138MB/s      2     30B       1/s     21B/s
          sampled_sql_count_agg    11.367ms   1.5M  12.9MB    132M/s  1.11GB/s      1      9B      87/s    791B/s
sampled_sql_join_with_predicate  1338.238ms   7.5M   180MB   5.61M/s   135MB/s      1      9B       0/s      6B/s
     sampled_sql_double_sum_agg    24.638ms   1.5M  25.7MB   60.9M/s  1.02GB/s      1      9B      40/s    365B/s
             stat_long_variance    26.390ms   1.5M  12.9MB   56.8M/s   488MB/s      1      9B      37/s    341B/s
         stat_long_variance_pop    26.583ms   1.5M  12.9MB   56.4M/s   484MB/s      1      9B      37/s    338B/s
           stat_double_variance    26.601ms   1.5M  12.9MB   56.4M/s   484MB/s      1      9B      37/s    338B/s
       stat_double_variance_pop    26.371ms   1.5M  12.9MB   56.9M/s   488MB/s      1      9B      37/s    341B/s
               stat_long_stddev    26.266ms   1.5M  12.9MB   57.1M/s   490MB/s      1      9B      38/s    342B/s
           stat_long_stddev_pop    26.350ms   1.5M  12.9MB   56.9M/s   489MB/s      1      9B      37/s    341B/s
             stat_double_stddev    26.316ms   1.5M  12.9MB     57M/s   489MB/s      1      9B      38/s    342B/s
         stat_double_stddev_pop    26.360ms   1.5M  12.9MB   56.9M/s   488MB/s      1      9B      37/s    341B/s
 sql_approx_count_distinct_long    35.763ms   1.5M  12.9MB   41.9M/s   360MB/s      1      9B      27/s    251B/s
sql_approx_count_distinct_double    37.198ms   1.5M  12.9MB   40.3M/s   346MB/s      1      9B      26/s    241B/s



参考



相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
目录
相关文章
|
分布式数据库 Hbase 存储
带你读《HBase原理与实践》之一:HBase概述
Apache HBase是基于Apache Hadoop构建的一个高可用、高性能、多版本的分布式NoSQL数据库,是Google BigTable的开源实现,通过在廉价服务器上搭建大规模结构化存储集群,提供海量数据高性能的随机读写能力。
|
存储 SQL 大数据
Hive介绍与核心知识点
Hive Hive简介 Facebook为了解决海量日志数据的分析而开发了Hive,后来开源给了Apache软件基金会。 官网定义: The Apache Hive ™ data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Hive是一种用类SQL语句来协助读写、管理那些存储在分布式存储系统上大数据集的数据仓库软件。
4530 0
|
3月前
|
消息中间件 分布式计算 Kafka
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
55 0
|
8月前
|
SQL Cloud Native 架构师
深入浅出Presto:大数据查询引擎的原理与应用
【4月更文挑战第7天】Presto是高性能的分布式SQL查询引擎,专为大规模数据交互式分析设计。它采用分离式架构,内存计算和动态规划优化查询,支持跨源查询、交互式查询和ANSI SQL兼容性。应用于大数据分析、实时数据湖查询和云原生部署。Presto的灵活性和效率使其在大数据处理领域备受推崇,适合分析师、数据科学家和IT架构师使用。未来将在博客中分享更多实践和案例。
983 1
|
8月前
|
SQL 缓存 分布式计算
flink1.18 SqlGateway 的使用和原理分析
# 了解flink1.18 sqlGateway 的安装和使用步骤 # 启动sqlgateway 流程,了解核心的结构 # sql提交流程,了解sql 的流转逻辑 # select 查询的ResultSet的对接流程,了解数据的返回和获取逻辑
|
8月前
|
分布式数据库 Hbase
Hbase运行原理解析
Hbase运行原理解析
34 0
|
存储 分布式计算 关系型数据库
Hbase原理介绍和使用场景分析
Hbase原理介绍和使用场景分析
1004 0
|
SQL 存储 资源调度
Hive 架构、执行原理【重要】
Hive 架构、执行原理【重要】
153 0
|
存储 缓存 算法
Flink 原理与实现:内存管理
如今,大数据领域的开源框架(Hadoop,Spark,Storm)都使用的 JVM,当然也包括 Flink。基于 JVM 的数据分析引擎都需要面对将大量数据存到内存中,这就不得不面对 JVM 存在的几个问题: 1. Java 对象存储密度低。一个只包含 boolean 属性的对象占用了16个字节内存:对象头占了8个,boolean 属性占了1个,对齐填充占了7个。而实际上只需要一个bit(1
10886 0
|
流计算 Apache 分布式计算
带你读《Flink原理、实战与性能优化》之一:Apache Flink介绍
这是一部以实战为导向,能指导读者零基础掌握Flink并快速完成进阶的著作,从功能、原理、实战和调优等4个维度循序渐进地讲解了如何利用Flink进行分布式流式应用开发。作者是该领域的资深专家,现就职于第四范式,曾就职于明略数据。