Pandas使用DataFrame进行数据分析比赛进阶之路(一)

简介:

这篇文章中使用的数据集是一个足球球员各项技能及其身价的csv表,包含了60多个字段。数据集下载链接:数据集

1、DataFrame.info()

这个函数可以输出读入表格的一些具体信息。这对于加快数据预处理非常有帮助。

import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('dataset/soccer/train.csv')
print(data.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10441 entries, 0 to 10440
Data columns (total 65 columns):
id                          10441 non-null int64
club                        10441 non-null int64
league                      10441 non-null int64
birth_date                  10441 non-null object
height_cm                   10441 non-null int64
weight_kg                   10441 non-null int64
nationality                 10441 non-null int64
potential                   10441 non-null int64
                   ...
dtypes: float64(12), int64(50), object(3)
memory usage: 5.2+ MB
None

2、DataFrame.query()

import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('dataset/soccer/train.csv')
print(data.query('lw>cf'))      # 这两个方法是等价的
print(data[data.lw > data.cf])  # 这两个方法是等价的

3、DataFrame.value_counts()

这个函数可以统计某一列中不同值出现的频率。

import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('dataset/soccer/train.csv')
print(data.work_rate_att.value_counts())
Medium    7155
High      2762
Low        524
Name: work_rate_att, dtype: int64

4、DataFrame.sort_values()

按照某一列的数值进行排序后输出。

import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('dataset/soccer/train.csv')
print(data.sort_values(['sho']).head(5))

5、DataFrame.groupby()

  • 根据国籍(nationality)这一列的属性进行分组,然后分别计算相同国籍的潜力(potential)的平均值。
import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('dataset/soccer/train.csv')
potential_mean = data['potential'].groupby(data['nationality']).mean().head(5)
print(potential_mean)
nationality
1    74.945338
2    72.914286
3    67.892857
4    69.000000
5    70.024242
Name: potential, dtype: float64
  • 根据国籍(nationality),俱乐部(club)这两列的属性进行分组,然后分别计算球员潜力(potential)的平均值。
import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('dataset/soccer/train.csv')
potential_mean = data['potential'].head(20).groupby([data['nationality'], data['club']]).mean()
print(potential_mean)
nationality  club
1            148     76
             461     72
5            83      64
29           593     68
43           213     67
51           258     62
52           112     68
54           604     81
63           415     70
64           359     74
78           293     73
90           221     70
96           80      72
101          458     67
111          365     64
             379     83
             584     65
138          9       72
155          543     72
163          188     71
Name: potential, dtype: int64

值得注意的是,在分组函数后面使用一个size()函数可以返回带有分组大小的结果。

potential_mean = data['potential'].head(200).groupby([data['nationality'], data['club']]).size()
nationality  club
1            148     1
43           213     1
51           258     1
52           112     1
54           604     1
78           293     1
96           80      1
101          458     1
155          543     1
163          188     1
Name: potential, dtype: int64

6、DataFrame.agg()

这个函数一般在groupby函数之后使用。

import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('dataset/soccer/train.csv')
potential_mean = data['potential'].head(10).groupby(data['nationality']).agg(['max', 'min'])
print(potential_mean)
            max  min
nationality          
1             76   76
43            67   67
51            62   62
52            68   68
54            81   81
78            73   73
96            72   72
101           67   67
155           72   72
163           71   71

7、DataFrame.apply()

将某一个函数应用到某一列或者某一行上,可以极大加快处理速度。

import pandas as pd
import matplotlib.pyplot as plt


#  返回球员出生日期中的年份
def birth_date_deal(birth_date):
    year = birth_date.split('/')[2]
    return year

data = pd.read_csv('dataset/soccer/train.csv')
result = data['birth_date'].apply(birth_date_deal).head() 
print(result)
0    96
1    84
2    99
3    88
4    80
Name: birth_date, dtype: object

当然如果使用lambda函数的话,代码会更加简洁:

data = pd.read_csv('dataset/soccer/train.csv')
result = data['birth_date'].apply(lambda x: x.split('/')[2]).head()
print(result)
相关文章
|
8天前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
102 71
|
7天前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
103 73
|
2月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
85 0
|
1月前
|
存储 数据挖掘 数据处理
掌握Pandas核心数据结构:Series与DataFrame的四种创建方式
本文介绍了 Pandas 库中核心数据结构 Series 和 DataFrame 的四种创建方法,包括从列表、字典、标量和 NumPy 数组创建 Series,以及从字典、列表的列表、NumPy 数组和 Series 字典创建 DataFrame,通过示例详细说明了每种创建方式的具体应用。
169 67
|
4天前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
42 22
|
8天前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
40 5
|
21天前
|
存储 数据挖掘 索引
Pandas数据结构:Series与DataFrame
本文介绍了 Python 的 Pandas 库中两种主要数据结构 `Series` 和 ``DataFrame`,从基础概念入手,详细讲解了它们的创建、常见问题及解决方案,包括数据缺失处理、数据类型转换、重复数据删除、数据筛选、排序、聚合和合并等操作。同时,还提供了常见报错及解决方法,帮助读者更好地理解和使用 Pandas 进行数据分析。
66 10
|
1月前
|
存储 数据挖掘 索引
Pandas Series 和 DataFrame 常用属性详解及实例
Pandas 是 Python 数据分析的重要工具,其核心数据结构 Series 和 DataFrame 广泛应用。本文详细介绍了这两种结构的常用属性,如 `index`、`values`、`dtype` 等,并通过具体示例帮助读者更好地理解和使用这些属性,提升数据分析效率。
51 4
|
2月前
|
SQL 数据采集 数据可视化
Pandas 数据结构 - DataFrame
10月更文挑战第26天
57 2
Pandas 数据结构 - DataFrame
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
50 2